Operation and Maintenance Manual

C15 and C18 Engines

BDN 1-Up (C15 Engine)
LDN 1-Up (C18 Engine)
Important Safety Information

Most accidents that involve product operation, maintenance and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards, including human factors that can affect safety. This person should also have the necessary training, skills and tools to perform these functions properly.

Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death.

Do not operate or perform any lubrication, maintenance or repair on this product, until you verify that you are authorized to perform this work, and have read and understood the operation, lubrication, maintenance and repair information.

Safety precautions and warnings are provided in this manual and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons.

The hazards are identified by the “Safety Alert Symbol” and followed by a “Signal Word” such as “DANGER”, “WARNING” or “CAUTION”. The Safety Alert “WARNING” label is shown below.

The meaning of this safety alert symbol is as follows:

Attention! Become Alert! Your Safety is Involved.

The message that appears under the warning explains the hazard and can be either written or pictorially presented.

A non-exhaustive list of operations that may cause product damage are identified by “NOTICE” labels on the product and in this publication.

Caterpillar cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this publication and on the product are, therefore, not all inclusive. You must not use this product in any manner different from that considered by this manual without first satisfying yourself that you have considered all safety rules and precautions applicable to the operation of the product in the location of use, including site-specific rules and precautions applicable to the worksite. If a tool, procedure, work method or operating technique that is not specifically recommended by Caterpillar is used, you must satisfy yourself that it is safe for you and for others. You should also ensure that you are authorized to perform this work, and that the product will not be damaged or become unsafe by the operation, lubrication, maintenance or repair procedures that you intend to use.

The information, specifications, and illustrations in this publication are on the basis of information that was available at the time that the publication was written. The specifications, torques, pressures, measurements, adjustments, illustrations, and other items can change at any time. These changes can affect the service that is given to the product. Obtain the complete and most current information before you start any job. Cat dealers have the most current information available.

When replacement parts are required for this product Caterpillar recommends using Cat replacement parts.

Failure to follow this warning may lead to premature failures, product damage, personal injury or death.

In the United States, the maintenance, replacement, or repair of the emission control devices and systems may be performed by any repair establishment or individual of the owner’s choosing.
Table of Contents

Foreword ... 4

Safety Section
- Safety Messages .. 5
- General Hazard Information 7
- Burn Prevention ... 10
- Fire Prevention and Explosion Prevention 11
- Crushing Prevention and Cutting Prevention 13
- Mounting and Dismounting 13
- Before Starting Engine 13
- Engine Starting ... 14
- Engine Stopping .. 14
- Electrical System .. 14
- Engine Electronics .. 15

Product Information Section
- General Information 16
- Product Identification Information 20

Operation Section
- Lifting and Storage 23
- Features and Controls 27
- Engine Diagnostics 32
- Engine Starting ... 33
- Engine Operation ... 37
- Cold Weather Operation 42
- Engine Stopping .. 44

Maintenance Section
- Refill Capacities .. 45
- Maintenance Recommendations 51
- Maintenance Interval Schedule (C15 Engines) 54
- Maintenance Interval Schedule (C15 Engines With Ratings Greater Than 579 hp) 55
- Maintenance Interval Schedule (C18 Engines With Ratings Greater Than 760 HP) 56
- Maintenance Interval Schedule (C18 Engines) 58

Warranty Section
- Warranty Information 94

Reference Information Section
- Engine Ratings .. 95
- Customer Service ... 96
- Reference Materials 98

Index Section
- Index .. 102
Foreword

Literature Information
This manual contains safety, operation instructions, lubrication and maintenance information. This manual should be stored in or near the engine area in a literature holder or literature storage area. Read, study and keep it with the literature and engine information.

English is the primary language for all Cat publications. The English used facilitates translation and consistency in electronic media delivery.

Some photographs or illustrations in this manual show details or attachments that may be different from your engine. Guards and covers may have been removed for illustrative purposes. Continuing improvement and advancement of product design may have caused changes to your engine which are not included in this manual. Whenever a question arises regarding your engine, or this manual, please consult with your Cat dealer for the latest available information.

Safety
This safety section lists basic safety precautions. In addition, this section identifies hazardous, warning situations. Read and understand the basic precautions listed in the safety section before operating or performing lubrication, maintenance and repair on this product.

Operation
Operating techniques outlined in this manual are basic. They assist with developing the skills and techniques required to operate the engine more efficiently and economically. Skill and techniques develop as the operator gains knowledge of the engine and its capabilities.

The operation section is a reference for operators. Photographs and illustrations guide the operator through procedures of inspecting, starting, operating and stopping the engine. This section also includes a discussion of electronic diagnostic information.

Maintenance
The maintenance section is a guide to engine care. The illustrated, step-by-step instructions are grouped by fuel consumption, service hours and/or calendar time maintenance intervals. Items in the maintenance schedule are referenced to detailed instructions that follow.

Use fuel consumption or service hours to determine intervals. Calendar intervals shown (daily, annually, etc.) may be used instead of service meter intervals if they provide more convenient schedules and approximate the indicated service meter reading.

Recommended service should be performed at the appropriate intervals as indicated in the Maintenance Interval Schedule. The actual operating environment of the engine also governs the Maintenance Interval Schedule. Therefore, under extremely severe, dusty, wet or freezing cold operating conditions, more frequent lubrication and maintenance than is specified in the Maintenance Interval Schedule may be necessary.

The maintenance schedule items are organized for a preventive maintenance management program. If the preventive maintenance program is followed, a periodic tune-up is not required. The implementation of a preventive maintenance management program should minimize operating costs through cost avoidances resulting from reductions in unscheduled downtime and failures.

Maintenance Intervals
Perform maintenance on items at multiples of the original requirement. Each level and/or individual items in each level should be shifted ahead or back depending upon your specific maintenance practices, operation and application. We recommend that the maintenance schedules be reproduced and displayed near the engine as a convenient reminder. We also recommend that a maintenance record be maintained as part of the engine’s permanent record.

See the section in the Operation and Maintenance Manual, “Maintenance Records” for information regarding documents that are generally accepted as proof of maintenance or repair. Your authorized Cat dealer can assist you in adjusting your maintenance schedule to meet the needs of your operating environment.

Overhaul
Major engine overhaul details are not covered in the Operation and Maintenance Manual except for the interval and the maintenance items in that interval. Major repairs are best left to trained personnel or an authorized Cat dealer. Your Cat dealer offers a variety of options regarding overhaul programs. If you experience a major engine failure, there are also numerous after failure overhaul options available from your Cat dealer. Consult with your dealer for information regarding these options.

California Proposition 65 Warning
Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

Battery posts, terminals and related accessories contain lead and lead compounds. Wash hands after handling.
Safety Section

Safety Messages

SMCS Code: 1000; 7405

There may be several specific safety messages on your engine. The exact location and a description of the safety messages are reviewed in this section. Become familiar with all safety messages.

Ensure that all of the safety messages are legible. Clean the safety messages or replace the safety messages if the words cannot be read or if the illustrations are not visible. Use a cloth, water, and soap to clean the safety messages. Do not use solvents, gasoline, or other harsh chemicals. Solvents, gasoline, or harsh chemicals could loosen the adhesive that secures the safety messages. The safety messages that are loosened could drop off the engine.

Replace any safety message that is damaged or missing. If a safety message is attached to a part of the engine that is replaced, install a new safety message on the replacement part. Your Caterpillar dealer can provide new safety messages.

Illustration 1

View of the right side of a typical C15 or C18 Industrial Engine
Universal Warning (1)

One safety message is located on the left side of the valve cover. One safety message is located on the right side of the valve cover.

WARNING

Do not operate or work on this equipment unless you have read and understand the instructions and warnings in the Operation and Maintenance Manual. Failure to follow the instructions or heed the warnings could result in injury or death. Contact any Caterpillar dealer for replacement manuals. Proper care is your responsibility.

Sulfuric Acid Burn (2)

One safety message for sulfuric acid burn is located on top of the exhaust cooler. One safety message for sulfuric acid burn is located on the right side of the exhaust cooler.

WARNING

Sulfuric Acid Burn Hazard may cause serious personal injury or death.

The exhaust gas cooler may contain a small amount of sulfuric acid. The use of fuel with sulfur levels greater than 15 ppm may increase the amount of sulfuric acid formed. The sulfuric acid may spill from the cooler during service of the engine. The sulfuric acid will burn the eyes, skin and clothing on contact. Always wear the appropriate personal protective equipment (PPE) that is noted on a material safety data sheet (MSDS) for sulfuric acid. Always follow the directions for first aid that are noted on a material safety data sheet (MSDS) for sulfuric acid.
General Hazard Information

SMCS Code: 1000; 4450; 7405

Attach a “Do Not Operate” warning tag to the start switch or controls before the engine is serviced or repaired. These warning tags (Special Instruction, SEHS7332) are available from your Cat dealer. Attach the warning tags to the engine and to each operator control station. When appropriate, disconnect the starting controls.

Do not allow unauthorized personnel on the engine, or around the engine when the engine is being serviced.

Cautiously remove the following parts. To help prevent spraying or splashing of pressurized fluids, hold a rag over the part that is being removed.

- Filler caps
- Grease fittings
- Pressure taps
- Breathers
- Drain plugs

Use caution when cover plates are removed. Gradually loosen, but do not remove the last two bolts or nuts that are located at opposite ends of the cover plate or the device. Before removing the last two bolts or nuts, pry the cover loose in order to relieve any spring pressure or other pressure.

- Wear a hard hat, protective glasses, and other protective equipment, as required.
- When work is performed around an engine that is operating, wear protective devices for ears in order to help prevent damage to hearing.
- Do not wear loose clothing or jewelry that can snag on controls or on other parts of the engine.
- Ensure that all protective guards and all covers are secured in place on the engine.
- Never put maintenance fluids into glass containers. Glass containers can break.
- Use all cleaning solutions with care.
- Report all necessary repairs.

Unless other instructions are provided, perform the maintenance under the following conditions:
• The engine is stopped. Ensure that the engine cannot be started.

• The protective locks or the controls are in the applied position.

• Disconnect the batteries when maintenance is performed or when the electrical system is serviced. Disconnect the battery ground leads. Tape the leads in order to help prevent sparks.

• When starting a new engine, make provisions to stop the engine if an overspeed occurs. If an engine has not been started since service has been performed, make provisions to stop the engine if an overspeed occurs. Shutting down the engine may be accomplished by shutting off the fuel supply and/or the air supply to the engine.

• Do not attempt any repairs that are not understood. Use the proper tools. Replace any equipment that is damaged or repair the equipment.

• Start the engine with the operator controls. Never short across the starting motor terminals or the batteries. This method of starting the engine could bypass the engine neutral start system and/or the electrical system could be damaged.

Pressurized Air and Water

Pressurized air and/or water can cause debris and/or hot water to be blown out which could result in personal injury.

The maximum air pressure for cleaning purposes must be reduced to 205 kPa (30 psi) when the air nozzle is deadheaded and used with effective chip guarding (if applicable) and personal protective equipment. The maximum water pressure for cleaning purposes must be below 275 kPa (40 psi).

When pressurized air and/or pressurized water is used for cleaning, wear protective clothing, protective shoes, and eye protection. Eye protection includes goggles or a protective face shield. Always wear eye protection for cleaning the cooling system.

Avoid direct spraying of water on electrical connectors, connections, and components. When using air for cleaning, allow the machine to cool to reduce the possibility of fine debris igniting when redeposited on hot surfaces.

 Fluid Penetration

Illustration 6
g00678600

Always use a board or cardboard when you check for a leak. Leaking fluid that is under pressure can penetrate body tissue. Fluid penetration can cause serious injury and possible death. A pin hole leak can cause severe injury. If fluid is injected into your skin, you must get treatment immediately. Seek treatment from a doctor that is familiar with this type of injury.

Containing Fluid Spillage

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Cat Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Cat Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.
Static Electricity Hazard when Fueling with Ultra-low Sulfur Diesel Fuel

The removal of sulfur and other compounds in ultra-low sulfur diesel fuel (ULSD fuel) decreases the conductivity of ULSD and increases the ability of ULSD to store static charge. Refineries may have treated the fuel with a static dissipating additive. Many factors can reduce the effectiveness of the additive over time. Static charges can build up in ULSD fuel while the fuel is flowing through fuel delivery systems. Static electricity discharge when combustible vapors are present could result in a fire or explosion. Ensure that the entire system used to refuel your machine (fuel supply tank, transfer pump, transfer hose, nozzle, and others) is properly grounded and bonded. Consult with your fuel or fuel system supplier to ensure that the delivery system complies with fueling standards for proper grounding and bonding.

Avoid static electricity risk when fueling. Ultra-low sulfur diesel fuel (ULSD fuel) poses a greater static ignition hazard than earlier diesel formulations with a higher sulfur contents. Avoid death or serious injury from fire or explosion. Consult with your fuel or fuel system supplier to ensure the delivery system is in compliance with fueling standards for proper grounding and bonding practices.

Lines, Tubes, and Hoses

Do not bend or strike high-pressure lines. Do not install lines, tubes, or hoses that are damaged.

Repair any fuel lines, oil lines, tubes, or hoses that are loose or damaged. Leaks can cause fires.

Inspect all lines, tubes, and hoses carefully. Do not use bare hands to check for leaks. Always use a board or cardboard for checking engine components for leaks. Tighten all connections to the recommended torque.

Check for the following conditions:

- End fittings that are damaged or leaking
- Outer covering that is chafed or cut
- Wire that is exposed in reinforced hose
- Outer covering that is ballooning locally
- Flexible part of the hose that is kinked or crushed
- Armoring that is embedded in the outer covering

Ensure that all of the clamps, the guards, and the heat shields are installed correctly. Correct installation of these components will help to prevent these effects: vibration, rubbing against other parts and excessive heat during operation.

Inhalation

Exhaust

Use caution. Exhaust fumes can be hazardous to your health. If you operate the equipment in an enclosed area, adequate ventilation is necessary.

Asbestos Information

Cat equipment and replacement parts that are shipped from Caterpillar are asbestos free. Caterpillar recommends the use of only genuine Cat replacement parts. Use the following guidelines when you handle any replacement parts that contain asbestos or when you handle asbestos debris.

Use caution. Avoid inhaling dust that might be generated when you handle components that contain asbestos fibers. Inhaling this dust can be hazardous to your health. The components that may contain asbestos fibers are brake pads, brake bands, lining material, clutch plates, and some gaskets. The asbestos that is used in these components is bound in a resin or sealed in some way. Normal handling is not hazardous unless airborne dust that contains asbestos is generated.

If dust that may contain asbestos is present, there are several guidelines that should be followed:
• Never use compressed air for cleaning.
• Avoid brushing materials that contain asbestos.
• Avoid grinding materials that contain asbestos.
• Use a wet method in order to clean up asbestos materials.
• A vacuum cleaner that is equipped with a high efficiency particulate air filter (HEPA) can also be used.
• Use exhaust ventilation on permanent machining jobs.
• Wear an approved respirator if there is no other way to control the dust.
• Comply with applicable rules and regulations for the workplace. In the United States, use Occupational Safety and Health Administration (OSHA) requirements. These OSHA requirements can be found in “29 CFR 1910.1001”.
• Obey environmental regulations for the disposal of asbestos.
• Stay away from areas that might have asbestos particles in the air.

Softwrap

Keep the engine room ventilation operating at full capacity. Wear a particulate respirator that has been approved by the National Institute of Occupational Safety and Health (NIOSH). Wear appropriate protective clothing in order to minimize direct contact. Use good hygiene practices and wash hands thoroughly after handling Softwrap material. Do not smoke until washing hands thoroughly after handling Softwrap material. Clean up debris with a vacuum or by wet sweeping. Do not use pressurized air to clean up debris.

Reference: The applicable material safety data sheets can be found at the following web site by searching using part number or the name:

Dispose of Waste Properly

Improperly disposing of waste can threaten the environment. Potentially harmful fluids should be disposed of according to local regulations.

Always use leakproof containers when you drain fluids. Do not pour waste onto the ground, down a drain, or into any source of water.

Burn Prevention

SMCS Code: 1000; 4450; 7405

Do not touch any part of an operating engine or engine aftertreatment system. Allow the engine or the engine aftertreatment system to cool before any maintenance is performed on the engine or the engine aftertreatment system. Relieve all pressure in the appropriate system before any lines, fittings or related items are disconnected.

Coolant

When the engine is at operating temperature, the engine coolant is hot. The coolant is also under pressure. The radiator and all lines to the heaters or to the engine contain hot coolant. Any contact with hot coolant or with steam can cause severe burns. Allow cooling system components to cool before the cooling system is drained.

Check the coolant level after the engine has stopped and the engine has been allowed to cool. Ensure that the filler cap is cool before removing the filler cap. The filler cap must be cool enough to touch with a bare hand. Remove the filler cap slowly in order to relieve pressure.

Cooling system conditioner contains alkali. Alkali can cause personal injury. Do not allow alkali to contact the skin, the eyes, or the mouth.
Oils
Hot oil and hot lubricating components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

If the application has a makeup tank, remove the cap for the makeup tank after the engine has stopped. The filler cap must be cool to the touch.

Batteries
The liquid in a battery is an electrolyte. Electrolyte is an acid that can cause personal injury. Do not allow electrolyte to contact the skin or the eyes.

Do not smoke while checking the battery electrolyte levels. Batteries give off flammable fumes which can explode.

Always wear protective glasses when you work with batteries. Wash hands after touching batteries. The use of gloves is recommended.

Fire Prevention and Explosion Prevention
SMCS Code: 1000; 4450; 7405

A flash fire may result if the covers for the engine crankcase are removed within 15 minutes after an emergency shutdown.

Determine whether the engine will be operated in an environment that allows combustible gases to be drawn into the air inlet system. These gases could cause the engine to overspeed. Personal injury, property damage, or engine damage could result.

If the application involves the presence of combustible gases, consult your Cat dealer for additional information about suitable protection devices.

Remove all flammable materials such as fuel, oil, and debris from the engine. Do not allow any flammable materials to accumulate on the engine.

All fluids that are captured in the fluid spill containment basin should be cleaned up immediately. Failure to clean up spilled fluids can cause a fire. Fire may cause personal injury and property damage.

Store fuels and lubricants in properly marked containers away from unauthorized persons. Store oily rags and any flammable materials in protective containers. Do not smoke in areas that are used for storing flammable materials.

Do not expose the engine to any flame.

Exhaust shields (if equipped) protect hot exhaust components from oil or fuel spray in a line, a tube, or a seal failure. Exhaust shields must be installed correctly.

Do not weld on lines or tanks that contain flammable fluids. Do not flame cut lines or tanks that contain flammable fluid. Clean any such lines or tanks thoroughly with a nonflammable solvent prior to welding or flame cutting.

Wiring must be kept in good condition. Properly route and attach all electrical wires. Check all electrical wires daily. Repair any wires that are loose or frayed before you operate the engine. Clean all electrical connections and tighten all electrical connections.

Eliminate all wiring that is unattached or unnecessary. Do not use any wires or cables that are smaller than the recommended gauge. Do not bypass any fuses and/or circuit breakers.

Arcing or sparking could cause a fire. Secure connections, recommended wiring, and properly maintained battery cables will help to prevent arcing or sparking.

Inspect all lines and hoses for wear or for deterioration. Properly route all lines. The lines and hoses must have adequate support and secure clamps. Tighten all connections to the recommended torque. Leaks can cause fires.

Properly install all oil filters and fuel filters. The filter housings must be tightened to the proper torque.
Use caution when you are refueling an engine. Do not smoke while you are refueling an engine. Do not refuel an engine near open flames or sparks. Always stop the engine before refueling.

Avoid static electricity risk when fueling. Ultra Low Sulfur Diesel (ULSD) poses a greater static ignition hazard than earlier diesel formulations with a higher Sulfur content. Avoid death or serious injury from fire or explosion. Consult with your fuel or fuel system supplier to ensure that the delivery system is in compliance with fueling standards for proper grounding and bonding practices.

Gases from a battery can explode. Keep any open flames or sparks away from the top of a battery. Do not smoke in battery charging areas.

Never check the battery charge by placing a metal object across the terminal posts. Use a voltmeter or a hydrometer.

Improper jumper cable connections can cause an explosion that can result in injury. Refer to the Operation Section of this manual for specific instructions.

Do not charge a frozen battery. Charging a frozen battery may result in an explosion.

The batteries must be kept clean. The covers (if equipped) must be kept on the cells. Use the recommended cables, connections, and battery box covers when the engine is operated.

Fire Extinguisher

Make sure that a fire extinguisher is available. Be familiar with the operation of the fire extinguisher. Inspect the fire extinguisher and service the fire extinguisher regularly. Obey the recommendations on the instruction plate.

Ether

Ether is flammable and poisonous.

Use ether in ventilated areas. Do not smoke while you are replacing an ether cylinder or while you are using an ether spray.
Do not store ether cylinders in living areas or in the engine compartment. Do not store ether cylinders in direct sunlight or in temperatures above 49 °C (120 °F). Keep ether cylinders away from open flames or sparks.

Dispose of used ether cylinders properly. Do not puncture an ether cylinder. Keep ether cylinders away from unauthorized personnel.

Do not spray ether into an engine if the engine is equipped with a thermal starting aid for cold weather starting.

Lines, Tubes, and Hoses

Do not bend high-pressure lines. Do not strike high-pressure lines. Do not install any lines that are bent or damaged.

Repair any lines that are loose or damaged. Leaks can cause fires. Consult your Cat dealer for repair or for replacement parts.

Check lines, tubes, and hoses carefully. Do not use your bare hand to check for leaks. Use a board or cardboard to check for leaks. Tighten all connections to the recommended torque.

Replace the parts if any of the following conditions are present:

- End fittings are damaged or leaking.
- Outer coverings are chafed or cut.
- Wires are exposed.
- Outer coverings are ballooning.
- Flexible parts of the hoses are kinked.
- Outer covers have embedded armoring.
- End fittings are displaced.

Make sure that all clamps, guards, and heat shields are installed correctly in order to prevent vibration, rubbing against other parts, and excessive heat.

Stay clear of all rotating parts and of all moving parts. Leave the guards in place until maintenance is performed. After the maintenance is performed, reinstall the guards.

Keep objects away from moving fan blades. The fan blades will throw objects or cut objects.

When objects are struck, wear protective glasses in order to avoid injury to the eyes.

Chips or other debris may fly off objects when objects are struck. Before objects are struck, ensure that no one will be injured by flying debris.

Mounting and Dismounting

SMCS Code: 1000; 4450; 7405

Inspect the steps, the handholds, and the work area before mounting the engine. Keep these items clean and keep these items in good repair.

Mount the engine and dismount the engine only at locations that have steps and/or handholds. Do not climb on the engine, and do not jump off the engine.

Face the engine in order to mount the engine or dismount the engine. Maintain a three-point contact with the steps and handholds. Use two feet and one hand or use one foot and two hands. Do not use any controls as handholds.

Do not stand on components which cannot support your weight. Use an adequate ladder or use a work platform. Secure the climbing equipment so that the equipment will not move.

Do not carry tools or supplies when you mount the engine or when you dismount the engine. Use a hand line to raise and lower tools or supplies.

Before Starting Engine

SMCS Code: 1000

NOTICE

For initial start-up of a new or rebuilt engine, and for start-up of an engine that has been serviced, make provision to shut the engine off should an overspeed occur. This may be accomplished by shutting off the air and/or fuel supply to the engine.
WARNING

Engine exhaust contains products of combustion which may be harmful to your health. Always start and operate the engine in a well ventilated area and, if in an enclosed area, vent the exhaust to the outside.

Inspect the engine for potential hazards.

Do not start the engine or move any of the controls if there is a "DO NOT OPERATE" warning tag or similar warning tag attached to the start switch or to the controls.

Before starting the engine, ensure that no one is on, underneath, or close to the engine. Ensure that the area is free of personnel.

If equipped, ensure that the lighting system for the engine is suitable for the conditions. Ensure that all lights work properly, if equipped.

All protective guards and all protective covers must be installed if the engine must be started in order to perform service procedures. To help prevent an accident that is caused by parts in rotation, work around the parts carefully.

Do not bypass the automatic shutoff circuits. Do not disable the automatic shutoff circuits. The circuits are provided in order to help prevent personal injury. The circuits are also provided in order to help prevent engine damage.

See the Service Manual for repairs and for adjustments.

Engine Starting

SMCS Code: 1000

If a warning tag is attached to the engine start switch or to the controls, DO NOT start the engine or move the controls. Consult with the person that attached the warning tag before the engine is started.

All protective guards and all protective covers must be installed if the engine must be started in order to perform service procedures. To help prevent an accident that is caused by parts in rotation, work around the parts carefully.

Start the engine with the engine start switch.

Always start the engine according to the procedure that is described in this Operation and Maintenance Manual, "Starting the Engine" for information about starting the engine. Know the correct procedure to prevent major damage to the engine components. Know the correct procedure to prevent personal injury.

To ensure that the jacket water heater (if equipped) and/or the lube oil heater (if equipped) is working properly, check the water temperature gauge and the oil temperature gauge during the heater operation.

Engine exhaust contains products of combustion that can be harmful to your health. Always start the engine and operate the engine in a ventilated area. If the engine is started in an enclosed area, vent the engine exhaust to the outside.

Engine Stopping

SMCS Code: 1000

Stop the engine according to the procedure in the Operation and Maintenance Manual, "Engine Stopping (Operation Section)" in order to avoid overheating of the engine and accelerated wear of the engine components.

Use the Emergency Stop Button (if equipped) ONLY in an emergency situation. Do not use the Emergency Stop Button for normal engine stopping. After an emergency stop, DO NOT start the engine until the problem that caused the emergency stop has been corrected.

Stop the engine if an overspeed condition occurs during the initial start-up of a new engine or an engine that has been overhauled. This may be accomplished by shutting off the fuel supply to the engine and/or shutting off the air supply to the engine.

To stop an electronically controlled engine, cut the power to the engine.

Electrical System

SMCS Code: 1000; 1400

Never disconnect any charging unit circuit or battery circuit cable from the battery when the charging unit is operating. A spark can cause the combustible gases that are produced by some batteries to ignite.

To help prevent sparks from igniting combustible gases that are produced by some batteries, the negative "−" jump start cable should be connected last from the external power source to the negative "−" terminal of the starting motor. If the starting motor is not equipped with a negative "−" terminal, connect the jump start cable to the engine block.

Check the electrical wires daily for wires that are loose or frayed. Tighten all loose electrical wires before the engine is started. Repair all frayed electrical wires before the engine is started. Refer to the "Engine Starting" section of this Operation and Maintenance Manual for specific starting instructions.
Grounding Practices

Proper grounding for the engine electrical system is necessary for optimum engine performance and reliability. Improper grounding will result in uncontrolled electrical circuit paths and in unreliable electrical circuit paths.

Uncontrolled electrical circuit paths can result in damage to main bearings, to crankshaft bearing journal surfaces, and to aluminum components.

Engines that are installed without engine-to-frame ground straps can be damaged by electrical discharge.

To ensure that the engine and the engine electrical systems function properly, an engine-to-frame ground strap with a direct path to the battery must be used. This path may be provided by way of a starting motor ground, a starting motor ground to the frame, or a direct engine ground to the frame.

All grounds should be tight and free of corrosion. The engine alternator must be grounded to the negative “-” battery terminal with a wire that is adequate to handle the full charging current of the alternator.

Engine Electronics

SMCS Code: 1000; 1900

WARNING

Tampering with the electronic system installation or the OEM wiring installation can be dangerous and could result in personal injury or death and/or engine damage.

The Electronic Control Module (ECM) provides a comprehensive, programmable engine monitoring system for this engine. The ECM monitors specific engine operating parameters in order to detect abnormal conditions that may develop. The ECM will generate an event code if a specific engine parameter exceeds an acceptable range that is defined by the engine monitoring system. The ECM will react with an action that is dependent on the severity of the condition. For information on event codes, refer to this Operation and Maintenance Manual, “Event Codes” topic (Operation Section) The following actions may be initiated by the ECM. These actions are dependent on the severity of the condition:

- Illumination of a warning lamp or warning alarm
- Engine derate
- Engine protection shutdown

The Engine Monitoring package can vary for different engine models and different engine applications. However, the monitoring system and the engine monitoring control will be similar for all engines.

Note: Many of the engine control systems and display modules that are available for Caterpillar Engines will work in unison with the Engine Monitoring System. Together, the two controls will provide the engine monitoring function for the specific engine application. Refer to the Troubleshooting Manual for more information.
Illustration 12

Left side view of a typical C15 or C18 Industrial Engine

(1) Fuel pressure sensor pre-filter
(2) Fuel pressure sensor post-filter
(3) Charge air cooler outlet sensor
(4) Open crankcase ventilation breather
(5) NRS temperature sensor
(6) NRS valve
(7) Engine control module (ECM)
(8) Crankcase pressure sensor
(9) Engine speed sensor
(10) Fuel pump
(11) Secondary fuel filter base
(12) Oil filler
(13) Fuel temperature sensor
Illustration 13
Right side view of a typical C15 or C18 Industrial Engine

(14) NRS cooler
(15) Turbocharger
(16) Oil filter base

Product Description
SMCS Code: 1000; 4450; 4491

Engine Description
The Caterpillar C15 and C18 Industrial Engine provides the following features:

• Four stroke cycle
• Mechanically actuated electronically controlled fuel injection system
• Turbocharged

Engine Specifications

Note: The front end of the engine is opposite the flywheel end of the engine. The left and the right sides of the engine are determined from the flywheel end. The number 1 cylinder is the front cylinder.
Electronic Engine Features

The Caterpillar C15 and C18 Engine are designed for electronic controls. The integral on board computer controls the operation of the engine. Current operating conditions are monitored. The Electronic Control Module (ECM) controls the response of the engine to these conditions and to the demands of the operator. These conditions and operator demands determine the precise control of fuel injection by the ECM. The electronic engine control system provides the following features:

- Engine speed governor
- Automatic air/fuel ratio control
- Torque rise shaping
- Injection timing control
- System diagnostics
- Aftertreatment regeneration control
- NOx reduction system control

Additional Features

The following additional features provide increased engine fuel economy and serviceability:

- Cold starting capability
- Tampering detection
- Diagnostics

Engine Diagnostics

The engine has built-in diagnostics in order to ensure that all of the components are functioning properly. Under certain conditions, the engine horsepower and the vehicle speed may be limited. A Caterpillar electronic service tool may be used to display the diagnostic code.

There are two categories of codes: diagnostic code and event code. These two categories of codes may be in two different states: active and logged.

Most of the diagnostic codes are logged and stored in the ECM. For additional information, refer to the Operation and Maintenance Manual, "Engine Diagnostics" topic (Operation Section).

Engine Service Life

Engine efficiency and maximum utilization of engine performance depend on the adherence to proper operation and maintenance recommendations. In addition, use recommended fuels, coolants, and lubricants. Use the Operation and Maintenance Manual as a guide for required engine maintenance.
Expected engine life is predicted by the average power that is demanded. The average power that is demanded is based on fuel consumption of the engine over a time. Reduced hours of operation at full throttle and/or operating at reduced throttle settings result in a lower average power demand. Reduced hours of operation will increase the length of operating time before an engine overhaul is required. For more information, refer to the Operation and Maintenance Manual, "Overhaul Considerations" topic (Maintenance Section).

Aftermarket Products and Caterpillar Engines

NOTICE

In order to maximize fuel system life and prevent premature wear out from abrasive particles in the fuel, a four micron [c] absolute high efficiency fuel filter is required for all Caterpillar common rail fuel systems. Caterpillar High Efficiency Fuel Filters meet these requirements. Consult your Caterpillar dealer for the proper part numbers.

When auxiliary devices, accessories, or consumables (filters, additives, catalysts, etc.) which are made by other manufacturers are used on Caterpillar products, the Caterpillar warranty is not affected simply because of such use.

However, failures that result from the installation or use of devices, accessories, or consumables from other manufacturers are NOT Caterpillar defects. Therefore, the defects are NOT covered under the Caterpillar warranty.
Product Identification Information

Plate Locations and Film Locations

SMCS Code: 1000; 4450

The serial number plate is located on the left side of the cylinder block. The engine control module will obstruct the view of the serial number plate.

The following information is stamped on the serial number plate: engine serial number, engine model and arrangement number.

Illustration 15 g02273593
View of the left side of a typical C15 or C18 Industrial Engine

Illustration 17 g02272993
View of the top of a typical C15 or C18 Industrial Engine

The engine information plate is located toward the rear of the valve cover. The engine information plate may be read from the right side of the engine.

Illustration 16 g00123229
Serial number plate

The following information is on the information plate: engine serial number, engine model, engine arrangement number, maximum altitude of the engine that is necessary to achieve the rated power, horsepower, high idle, full load rpm, fuel settings and other information.
View of the exhaust system of a C15 or C18 Industrial Engine

The Clean Emission Module (CEM) identification plate contains the following information: part number, serial number, change level and configuration ID code. This information may be needed by the Cat dealer when inquiries are being made on the CEM.

Emissions Certification Film

SMCS Code: 1000; 7405

S/N: BDN1–Up

This label is located on the engine.

Emissions Certification Film

SMCS Code: 1000; 7405

S/N: BDN1–Up

This label is located on the engine.

CEM plate

The CEM plate

Emissions Certification Film

SMCS Code: 1000; 7405

Note: This information is pertinent in the United States, in Canada and in Europe.

Consult your Cat dealer for an Emission Control Warranty Statement.

EPA Emissions Certification Film

The EPA Emissions Certification Film (if equipped) and/or the European Emissions Certification Film (if equipped) is located on the side of the engine.

European Emissions Certification Film

The EPA Emissions Certification Film (if equipped) and/or the European Emissions Certification Film (if equipped) is located on the side of the engine.

Reference Information

SMCS Code: 1000; 4450

Identification of the items in Table 3 may be needed in order to obtain parts and service. Some of the information is on the engine Serial Number Plate and/or Information Plate. Locate the information for your engine. Record the information on the appropriate space in Table 3. Make a copy of this list for a record. Retain the information for future reference.
The top level part numbers in the Parts Manual for the engine are listed with the engine arrangement number. Occasionally, an arrangement may be slightly modified before the product is shipped from the factory. In these cases, a modification number indicates that the arrangement has been modified.

The packaging arrangement may also be called a pricing arrangement or a customer arrangement. This is the total package with attachments and options that are not included in the engine arrangement.

The performance specification can be used by your Caterpillar dealer with the Technical Marketing Information system. Before the engine leaves the factory, the engine performance is tested. Detailed performance data is recorded. The performance specification number can be used for obtaining the data.

<table>
<thead>
<tr>
<th>Reference Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Model</td>
</tr>
<tr>
<td>Serial Number</td>
</tr>
<tr>
<td>Arrangement Number</td>
</tr>
<tr>
<td>Modification Number</td>
</tr>
<tr>
<td>Packaging Arrangement</td>
</tr>
<tr>
<td>Turbocharger</td>
</tr>
<tr>
<td>Fuel Filter Element</td>
</tr>
<tr>
<td>Lubrication Oil Filter Element</td>
</tr>
<tr>
<td>Auxiliary Oil Filter Element</td>
</tr>
<tr>
<td>Air Cleaner Element</td>
</tr>
<tr>
<td>Fan Drive Belt</td>
</tr>
<tr>
<td>Alternator Belt</td>
</tr>
<tr>
<td>Capacity of the Lubrication System</td>
</tr>
<tr>
<td>Capacity of the Cooling System</td>
</tr>
<tr>
<td>Performance Specification Number</td>
</tr>
<tr>
<td>Personality Module</td>
</tr>
<tr>
<td>Low Idle rpm</td>
</tr>
<tr>
<td>High Idle rpm</td>
</tr>
<tr>
<td>Full Load rpm</td>
</tr>
<tr>
<td>Power Rating</td>
</tr>
</tbody>
</table>
Operation Section

Lifting and Storage

Product Lifting

SMCS Code: 7000; 7002

NOTICE

Never bend the eyebolts and the brackets. Only load the eyebolts and the brackets under tension. Remember that the capacity of an eyebolt is less as the angle between the supporting members and the object becomes less than 90 degrees.

When it is necessary to remove a component at an angle, only use a link bracket that is properly rated for the weight.

Use a hoist to remove heavy components. Use an adjustable lifting beam to lift the engine. All supporting members (chains and cables) should be parallel to each other. The chains and cables should be perpendicular to the top of the object that is being lifted.

Some removals require lifting the fixtures in order to obtain proper balance and safety.

To remove the engine ONLY, use the lifting eyes that are on the engine.

Lifting eyes are designed and installed for the specific engine arrangement. Alterations to the lifting eyes and/or the engine make the lifting eyes and the lifting fixtures obsolete. If alterations are made, ensure that proper lifting devices are provided. Consult your Caterpillar dealer for information regarding fixtures for proper engine lifting.

Engine Lifting with a Fuel Tank

WARNING

Lift eyes or tank can fail when lifting tank containing fluids resulting in possible personal injury. Drain tank of all fluids before lifting.

Lifting the engine with a fuel tank that is mounted to the engine requires special equipment and procedures. Do not lift the unit with fuel in the fuel tank. Consult your Caterpillar dealer for information regarding fixtures for proper lifting of your complete package.

Clean Emission Module Lifting

The Clean Emission Module (CEM) should only be lifted by the designated lifting eyes (1). Lifting eye locations will be different depending on the CEM arrangement. Do not attempt to lift the CEM using straps around the diesel particulate filter.
Product Storage

SMCS Code: 7002

Storage (Less Than One Year)

If an engine is not used, oil can run off the following parts that normally receive lubrication: cylinder walls, piston rings, main bearings, connecting rod bearings, crankshaft and gears.

This lack of lubricant allows corrosion to begin to appear on the metal. This condition is worse in areas of high humidity.

When the engine is started again, metal to metal contact will cause wear before the surfaces receive oil. To minimize this wear, use the starter to turn the engine with the throttle in the FUEL OFF position. When oil pressure is shown on the pressure gauge, start the engine.

1. Clean the engine of any dirt, rust, grease, and oil. Inspect the exterior. Paint areas that contain paint damage with a good quality paint.

2. Remove dirt from the air cleaners. Check all seals, gaskets, and the filter element for damage.

3. Apply lubricant to all points in this Operation and Maintenance Manual, “Maintenance Interval Schedule”.

4. Drain the crankcase oil. Replace the crankcase oil and change the oil filters. For the proper procedure, refer to this Operation and Maintenance Manual.

5. If the engine is equipped with an air starting motor, fill the reservoir with the following mixture: 50 percent volatile corrosion inhibitor oil (<nomen>VCI oil</nomen>) and 50 percent engine oil.

6. Add VCI oil to the crankcase oil. The volume of VCI oil in the crankcase oil should be 3 to 4 percent.

Note: If the engine crankcase is full, drain enough engine oil so the mixture can be added.

7. Remove the air filter elements. Turn the engine at cranking speed with the throttle control in FUEL OFF position. Use a sprayer to add a mixture of 50 percent VCI oil and 50 percent engine oil into the air inlet or turbocharger inlet.

Note: The mixture of VCI oil can be added to the inlet by removing the plug for checking turbocharger boost pressure. The minimum application rate for the VCI oil mixture is 5.5 mL per L (3 oz per 1000 cu in) of engine displacement.

8. Use a sprayer to apply a mixture of 50 percent VCI oil and 50 percent crankcase oil into the exhaust openings. The minimum application rate for the oil mixture is 5.5 mL per L (3 oz per 1000 cu in) of engine displacement. Seal the exhaust pipe and seal any drain holes in the muffler.

9. Remove the fuel from the secondary fuel filter housing. Alternately, empty and reinstall the spin-on fuel filter element in order to remove any dirt and water. Drain any sleeve metering fuel pump.

Clean the primary fuel filter. Fill with calibration fluid or kerosene. Install the primary fuel filter and operate the priming pump. This procedure will send clean oil to the secondary filter and the engine.

Open the fuel tank drain valve in order to drain any water and dirt from the fuel tank. Apply a spray of calibration fluid or kerosene at the rate of 30 mL per 30 L (1 oz per 7.50 gal US) of fuel tank capacity in order to prevent rust in the fuel tank. Add 0.15 mL per L (.02 oz per 1 gal US) of commercial biocide such as Biobor JF to the fuel.

Apply a small amount of oil to the threads on the fuel tank filler neck and install the cap. Seal all openings to the tank in order to prevent evaporation of the fuel and as a preservative.

10. Remove the fuel nozzles or spark plugs. Apply 30 mL (1 oz) of the mixture of oils (50 percent VCI oil and 50 percent engine oil) into each cylinder.

Use a bar or a turning tool in order to turn over the engine slowly. This procedure puts the oil on the cylinder walls. Install all fuel nozzles or spark plugs and tighten to the correct torque.

11. Spray a thin amount of a mixture of 50 percent VCI oil and 50 percent engine oil onto the following components: flywheel, ring gear teeth and starter pinion. Install the covers in order to prevent evaporation of the vapors from the VCI oil.

12. Apply a heavy amount of Cat Multipurpose Grease (MPGM) to all outside parts that move, such as rod threads, ball joints, linkage.

Note: Install all covers. Ensure that tape has been installed over all openings, air inlets, exhaust openings, the flywheel housing, the crankcase breathers, the dipstick tubes.
Ensure that all covers are airtight and weatherproof. Use a waterproof weather resistant tape such as Kendall No. 231 or an equivalent. Do not use duct tape. Duct tape will only seal for a short time.

13. Under most conditions, removing the batteries is the best procedure. As an alternative, place the batteries in storage. As needed, periodically charge the batteries while the batteries are in storage.

If the batteries are not removed, wash the tops of the batteries until the tops are clean. Apply an electrical charge to the batteries in order to obtain a specific gravity of 1.225.

Disconnect the battery terminals. Place a plastic cover over the batteries.

Note: For additional information, refer to Special Instruction, SEHS7633, "Battery Test Procedure".

14. Loosen all belts.

15. Place a waterproof cover over the engine. Ensure that the engine cover is secure. The cover should be loose enough to allow air to circulate around the engine in order to prevent damage from condensation.

16. Attach a tag with the storage date to the engine.

17. Remove the waterproof cover at 2 month or 3 month intervals in order to check the engine for corrosion. If the engine has signs of corrosion, repeat the protection procedure.

Coolant System

Completely fill the cooling system before storage. Refer to this Operation and Maintenance Manual, “Fluid Recommendations” for more information about coolants.

Removal from Storage

1. Remove all outside protective covers.

2. Change the oil and filters.

3. Check the condition of the fan and alternator belts. Replace the belts, if necessary. Refer to this Operation and Maintenance Manual, “Belts - Inspect/Adjust/Replace” for the correct procedure.

4. Replace the fuel filter elements.

5. Remove the plastic covers from the air cleaner elements.

6. Use a bar or a turning tool in order to turn the engine in the normal direction of rotation. The procedure ensures that no hydraulic locks or resistance exist.

7. Before starting the engine, remove the valve cover or covers. Put a large amount of engine oil on the camshaft, cam followers, and valve mechanism in order to prevent damage to the mechanism.

8. Pressure-lubricate the engine before starting the engine. Pressure lubricating the engine ensures immediate lubrication and prevents damage to the engine during the first few minutes of engine operation. If the engine is not equipped with a prelude pump, contact your Cat dealer for information about lubrication of the engine before starting the engine.

9. Check the condition of all rubber hoses. Replace any worn hoses. Replace any damaged hoses.

10. Before start-up, test the cooling system for a 3 percent to 6 percent concentration of coolant conditioner. Add liquid coolant conditioner or a coolant conditioner element, if equipped.

Test the coolant mixture for proper nitrite level. If necessary, adjust the coolant mixture.

Prime the engine with clean diesel fuel before starting.

11. Ensure that the cooling system is clean. Ensure that the system is full. Ensure that the system has the correct amount of supplemental cooling system conditioner.

12. On the first day of operation, check the entire engine several times for leaks and correct operation.

13. If the engine was removed from storage in which temperatures of less than -12°C (10°F) were encountered, refer to Service Manual, SEBU5898, “Cold Weather Recommendations Operation and Maintenance”.

Engines with 2 year preservation group from the factory

Note: Engines that are stored more than 6 months must be prelubed and rotated in 6 month intervals.

For engines purchased with a factory applied, 2 year preservation group, follow the instructions from this Operation and Maintenance Manual, “Removal From Storage”, step 8 and in this Operation and Maintenance Manual, “Storage (less than 1 year)” section.
For engine CEM's stored for more than one year, use fuel system cleaner (part no. 343-6210) or equivalent as recommenced in PEHJ0237, for 80 hours of operation.
Features and Controls

Battery Disconnect Switch
(If Equipped)

SMCS Code: 1411

The battery disconnect switch and the engine start switch perform different functions. Turn off the battery disconnect switch in order to disable the entire electrical system. The battery remains connected to the electrical system when you turn off the engine start switch.

Turn the battery disconnect switch to the OFF position and remove the key when you service the electrical system or any other components.

Also turn the battery disconnect switch to the OFF position and remove the key when the engine will not be used for an extended period of a month or more. This will prevent drainage of the battery.

NOTICE
Never move the battery disconnect switch to the OFF position while the engine is operating. Serious damage to the electrical system could result.

To ensure that no damage to the engine occurs, verify that the engine is fully operational before cranking the engine. Do not crank an engine that is not fully operational.

Perform the following procedure in order to check the battery disconnect switch for proper operation:

1. With the battery disconnect switch in the ON position, verify that electrical components are functioning. Verify that the hour meter is displaying information. Verify that the engine will crank.

2. Turn the battery disconnect switch to the OFF position.

3. Verify that the following items are not functioning: electrical components, hour meter and engine cranking. If any of the items continue to function with the battery disconnect switch in the OFF position, consult your Caterpillar dealer.

Monitoring System

SMCS Code: 1900; 7400; 7450; 7451

The monitoring system is designed to alert the operator to an immediate problem with any of the engine systems that are monitored. The Monitoring System is also designed to alert the operator to an impending problem with any of the engine systems that are monitored.

The monitoring system parameters can be accessed via the Cat ET service tool. Many of the parameters within the monitoring system can be tailored to suit the operation of the engine.

An example of adjustments that may be made within the monitoring system is changing the setpoint of the engine overspeed indicator from the factory default setting.

Indicators and Gauges

The instrument panel may look like the instrument panel that is pictured in illustration 25 or the instrument panel may look like the instrument panel that is pictured in illustration 26. The instrument panel may not include all of the instruments that are shown in the illustration.
Diesel Particulate Filter (DPF) Lamp (2) – The DPF lamp will illuminate when a regeneration of the DPF is needed. Refer to this Operation and Maintenance Manual, “Diesel Particulate Filter Regeneration” for more information on this lamp.

High Exhaust Temperature Lamp (3) – This lamp is illuminated when a DPF regeneration is active.

Regeneration Disabled (4) – This lamp will be illuminated if the regeneration is manually disabled through the regeneration switch or through the Cat (ET) service tool.

Start Switch (5) – The start switch has three positions: OFF, RUN and START. When the start switch is turned clockwise to the RUN position, the lamps will flash for 5 seconds during the system test. The lamps will then shut off. In the RUN position, the Electronic Control Module (ECM) and electronic systems are powered up.

Diagnostic Lamp (6) – The diagnostic lamp will illuminate when an active fault code is present.

Shutdown Lamp (7) – The shutdown lamp will illuminate when a critical engine event occurs which requires that the engine be shut down. The event should be addressed as quickly as possible.

Shutdown Switch (8) – Use the engine shutdown switch in order to stop the engine. Push the shutdown switch in order to put the switch in the OFF position. Moving the switch to the OFF position will stop the engine. After the engine stops, turn the knob clockwise. Turning the knob will reset the engine shutdown switch to the ON position.

Service Hour Meter (9) – This gauge indicates the total number of clock hours of engine operation. Hours of operation are logged in the ECM. A service tool is needed to retrieve the hours from the ECM. A Service Hour Meter may be installed on the engine.

Idle Speed Switch (10) – When the switch is in the up position, the engine speed increases to HIGH IDLE. When the switch is in the down position, the engine speed decreases to LOW IDLE.

Circuit Breaker (1) – Reset the circuit breaker if a circuit breaker trips. Press the button in order to reset the circuit breaker. If the electrical system is working properly, the button will remain pressed. If the button does not remain pressed or if the circuit breaker trips soon after being reset, check the appropriate electrical circuit. Repair the electrical circuit, if necessary.

WARNING

Resetting the circuit breakers in a flammable atmosphere or a combustible atmosphere may lead to fire hazards or explosion hazards which may result in personal injury or death. DO NOT reset the circuit breaker when a flammable atmosphere or a combustible atmosphere is present and the power has not been removed from the equipment.
Regeneration Switch (11) – Used to activate a forced regeneration or manually disable regeneration. Refer to this Operation and Maintenance Manual, “Diesel Particulate Filter Regeneration” for more information on this switch.

OK to Elevate Idle Switch (12) – Pressing in and locking the “OK to Elevate Idle” switch enables the engine ECM to elevate engine speed automatically when needed. For example, if the engine is running at low idle and a DPF regeneration is activated, having the “OK to Elevate Idle” switch in the LOCKED position will allow the engine speed to increase in order for the DPF regeneration to occur.

Tachometer (13) – This gauge indicates engine speed (rpm). When the throttle control lever is moved to the full throttle position without load, the engine is running at high idle. The engine is running at the full load rpm when the throttle control lever is at the full throttle position with maximum rated load.

Voltmeter (14) – This gauge indicates the voltage of the electrical system. The needle in the red range indicates low voltage or high voltage.

Fuel Pressure (15) – This gauge indicates fuel pressure to the fuel injection pump from the fuel filter. A decrease in fuel pressure usually indicates a dirty fuel filter or a plugged fuel filter. As the fuel filter becomes plugged, there will be a noticeable reduction in the performance of the engine.

Engine Oil Pressure (16) – The oil pressure should be greatest after a cold engine is started. The pressure will decrease as the engine warms up. The pressure will increase when the engine rpm is increased. The pressure will stabilize when the engine rpm is stable.

A lower oil pressure is normal at low idle. If the load is stable and the gauge reading changes, perform the following procedure:

1. Remove the load.
2. Reduce engine speed to low idle.
3. Check and maintain the oil level.

NOTICE
To help prevent engine damage, never exceed the high idle rpm. An overspeed can result in serious damage to the engine. The engine can be operated at high idle without damage, but the engine should never be allowed to exceed the high idle rpm.

Note: The high idle rpm and the full load rpm are stamped on the Information Plate.

Jacket Water Coolant Temperature (17) – Typical temperature range is 87 to 98°C (189 to 208°F). Higher temperatures may occur under certain conditions. The water temperature reading may vary according to load. The reading should never exceed the boiling point for the pressurized system that is being used.

Coolant Temperature (18) – When the coolant temperature is above the normal operating value, the coolant temperature gauge will be in the red zone. Refer to the Messenger panel for any additional information that may be available.

Warning Lamp (19) – There is a general fault in the engine. Refer to the Messenger display for any additional information that may be available.

Service Tool Connector (20) – For more information about the use of Cat ET and the PC requirements for Cat ET, refer to the documentation that accompanies your Cat ET software.

Mini Industrial Power Display (MIPD)

The mini industrial power display provides for a means to view various types of engine information. The information that can be viewed is described below.
“OK/Select” button (1) – The “OK/Select” button is used to confirm the selections that were made with the “scroll left/right” buttons.

“Backlight” button (2) – This button is used to turn the backlight of the display on or off.

“Scroll left/right button” (3) – This button is used to advance through the various screens of the MIPD.

The MIPD comes with three preset user interfaces. The interfaces are labeled as “Operator_1”, “Operator_2”, and “Operator_3”.

“Operator_1” user interface is preset with various engine, aftertreatment, and transmission information over 14 screens. Diagnostic and system information is also included. The information in “Operator_1” is displayed via ISO symbols and metric display units.

“Operator_2” user interface is preset with various engine, aftertreatment, and transmission information over 12 screens. Diagnostic and system information is also included. The information is displayed in analog style gauges and English display units.

“Operator_3” user interface is preset with various engine, aftertreatment, and transmission information over 12 screens. Diagnostic and system information is also included. The information is displayed in analog style gauges and English display units.

Note: Only use “Operator_1” and “Operator_2” interfaces on Tier 4 engines. The added aftertreatment parameters in these interfaces are necessary to ensure proper operation.

Parameters

Below are a list of all the parameters that are viewable through the three user interfaces used within the MIPD.

Engine Speed – Displays the current engine speed in RPM.

Coolant Temperature – Displays the current coolant temperature of the engine.

Engine Load – Displays the amount of load on the engine as a percentage.

Regen Disable Status – Displays whether the regeneration is manually disabled.

DPF Lamp – Displays when a DPF regeneration is needed.

Soot Loading – Displays the amount of soot within the DPF as a percentage.

Air Inlet Temperature – Displays the temperature of the air entering the engine through the air filter.

Intake Manifold Air Temperature – Displays the temperature of the air entering the engine at the intake manifold.

Boost Pressure – Displays the amount of pressure of the air entering the intake manifold of the engine.

Crankcase Pressure – Displays the amount of pressure within the crankcase of the engine.

Atmospheric Pressure – Displays the amount of atmospheric pressure that the engine is operating in.

Fuel Temp – Displays the temperature of the fuel entering the engine.

Fuel Rate – Displays the amount of fuel being used by the engine.

Filtered Fuel Delta Pressure – Displays the pressure across the fuel filter.

Low Idle RPM – Displays the low idle speed setpoint in RPM.

Hi Idle Speed – Displays the high idle speed setpoint in RPM.

Desired Speed – Displays the desired engine speed in RPM.

Primary Throttle – Displays the primary throttle position as a percentage.

Secondary Throttle – Displays the secondary throttle position as a percentage.

Auxiliary Pressure Sensor 1 – Displays the pressure being measured by the #1 auxiliary sensor if one is being used.

Auxiliary Temperature Sensor 1 – Displays the temperature being measured by the #1 auxiliary sensor if one is being used.

Battery Voltage – Displays the battery voltage.

Aftertreatment 1 Regeneration Status – Displays the status of the regeneration system as manual or automatic.

HEST Lamp – Illuminates when a DPF regeneration is active.
DPF Intake Temperature – Displays the temperature of the exhaust gas entering the DPF.

DPF Outlet Temperature – Displays the temperature of the exhaust gas leaving the DPF.

Transmission Selected Gear – Displays the transmission gear being requested.

Transmission Requested Gear – Displays the transmission gear being requested.

Transmission Oil Pressure – Displays the oil pressure inside the transmission.

Transmission Oil Temperature – Displays the oil temperature of the transmission.

Transmission Torque Limit – Displays the limit of torque allowed by the transmission.

System Information

User Name – Displays the preset user name that is selected.

Software Version – Displays the version of software that is programmed in the MIPD.

Serial Number – Displays the serial number of the MIPD.

Display Units – Displays the units of measurement that is selected for the given user.

Engine Location – Displays which engine data is being reported if more than one engine is connected to the MIPD.

Language – Displays the selected language.

Alarm – Indicates whether audible alarm is set to ON or OFF when an audible alarm is connected to the MIPD.
Engine Diagnostics

Self-Diagnostics

SMCS Code: 1000; 1900; 1901; 1902

The electronic control module has some self-diagnostic ability. When an electronic problem with an input or an output is detected, a diagnostic code is generated. This indicates the specific problem with the circuitry.

Diagnostic codes are also generated when an abnormal engine operating condition is detected. For example, a diagnostic code will be generated if the low oil pressure alarm is activated. In this case, the diagnostic code indicates the symptom of a problem. This type of diagnostic code is called an event. An event is triggered by the detection of an abnormal engine operating condition.

A diagnostic code which represents a problem that currently exists is called an active code.

A diagnostic code that is stored in memory is called a logged code. Always service active codes prior to servicing logged codes. Logged codes may include the following categories:

- Intermittent problems
- Recorded events
- Performance history

Logged codes may not indicate that a repair is needed. The problems may have been repaired since the logging of the code. Logged codes may be helpful to troubleshoot intermittent problems.
Engine Starting

Before Starting Engine

SMCS Code: 1000; 1400; 1450

Perform the required daily maintenance and other periodic maintenance before the engine is started. Inspect the engine compartment. This inspection can help prevent major repairs at a later date. Refer to the Operation and Maintenance Manual, “Maintenance Interval Schedule” for more information.

- For the maximum service life of the engine, make a thorough inspection before the engine is started. Look for the following items: oil leaks, coolant leaks, loose bolts and trash buildup. Remove trash buildup and arrange for repairs, as needed.
- Inspect the aftercooler for loose connections and for debris buildup.
- Inspect the cooling system hoses for cracks and for loose clamps.
- Inspect the alternator and accessory drive belts for cracks, breaks, and other damage.
- Inspect the wiring for loose connections and for worn wires or frayed wires.
- Check the fuel supply. Drain water from the water separator (if equipped). Open the fuel supply valve.

NOTICE

All valves in the fuel return line must be open before and during engine operation to help prevent high fuel pressure. High fuel pressure may cause filter housing failure or other damage.

If the engine has not been started for several weeks, fuel may have drained from the fuel system. Air may have entered the filter housing. Also, when fuel filters have been changed, some air pockets will be trapped in the engine. In these instances, prime the fuel system. Refer to the Operation and Maintenance Manual, “Fuel System - Prime” for more information on priming the fuel system.

WARNING

Engine exhaust contains products of combustion which may be harmful to your health. Always start and operate the engine in a well ventilated area and, if in an enclosed area, vent the exhaust to the outside.

- Do not start the engine or move any of the controls if there is a “DO NOT OPERATE” warning tag or similar warning tag attached to the start switch or to the controls.
- Ensure that the areas around the rotating parts are clear.
- All of the guards must be put in place. Check for damaged guards or for missing guards. Repair any damaged guards. Replace damaged guards and/or missing guards.
- Disconnect any battery chargers that are not protected against the high current drain that is created when the electric starting motor (if equipped) is engaged. Check electrical cables and check the battery for poor connections and for corrosion.
- Reset all of the shutoffs or alarm components.
- Check the engine lubrication oil level. Maintain the oil level between the “ADD” mark and the “FULL” mark on the oil level gauge.
- Check the coolant level. Observe the coolant level in the coolant recovery tank (if equipped). Maintain the coolant level to the “FULL” mark on the coolant recovery tank.
- If the engine is not equipped with a coolant recovery tank maintain the coolant level within 13 mm (0.5 inch) of the bottom of the filler pipe. If the engine is equipped with a sight glass, maintain the coolant level in the sight glass.
- Observe the air cleaner service indicator (if equipped). Service the air cleaner when the yellow diaphragm enters the red zone, or when the red piston locks in the visible position.
- Ensure that any driven equipment has been disengaged. Minimize electrical loads or remove any electrical loads.

Cold Weather Starting

SMCS Code: 1000; 1250; 1450; 1453; 1456; 1900

Startability will be improved at temperatures below 10°C (50°F) from the use of a cylinder block coolant heater or from other means that are used to heat the crankcase oil. Some engine applications use a jacket water heater to improve startability. Use of a jacket water heater will help reduce white smoke and misfire during start-up in cold weather.
Note: If the engine has not been run for several weeks, fuel may have drained. Air may have moved into the filter housing. Also, when fuel filters have been changed, some air will be left in the filter housing. Refer to the Operation and Maintenance Manual, "Fuel System - Prime" (Maintenance Section) for more information on priming the fuel system.

Ether Injection System (If Equipped)

The ether injection system is controlled by the ECM. The ECM monitors the coolant temperature, intake air temperature, ambient air temperature, and barometric pressure to determine when ether injection is needed. At sea level, ether will be used if any of the temperatures fails to exceed 0° C (32° F). This temperature is subject to an increase as barometric pressure increases.

![WARNING]

Personal injury or property damage can result from alcohol or starting fluids.

Alcohol or starting fluids are highly flammable and toxic and if improperly stored could result in injury or property damage.

Follow the procedure in this Operation and Maintenance Manual, "Starting the Engine".

Starting the Engine

SMCS Code: 1000; 1450

![WARNING]

Engine exhaust contains products of combustion which may be harmful to your health. Always start and operate the engine in a well ventilated area and, if in an enclosed area, vent the exhaust to the outside.

Starting the Engine

Refer to the Owner’s Manual of the OEM for your type of controls. Use the following procedure to start the engine.

1. Place the transmission in NEUTRAL. Disengage the flywheel clutch in order to allow the engine to start faster, and to reduce the draining of the battery.

2. Turn the ignition switch to the ON position.

During the key on, the diagnostic lamp, warning lamp, regeneration lamps, and DPF disabled lamp will be checked for proper bulb operation. If any of the lamps do not illuminate, replace the bulb.

NOTICE

Do not engage the starting motor when flywheel is turning. Do not start the engine under load.

If the engine fails to start within 30 seconds, release the starter switch or button and wait two minutes to allow the starting motor to cool before attempting to start the engine again.

3. Push the start button or turn the ignition switch to the START position in order to crank the engine.

Do not push down or hold the throttle down while the engine is cranked. The system will automatically provide the correct amount of fuel that is needed to start the engine.

4. If the engine fails to start within 30 seconds, release the start button, or the ignition switch. Wait for 2 minutes in order to allow the starting motor to cool before attempting to start the engine again.

![NOTICE]

Oil pressure should rise within 15 seconds after the engine starts. Do not increase engine rpm until the oil pressure gauge indicates normal. If oil pressure is not indicated on the gauge within 15 seconds, DO NOT operate the engine. STOP the engine, investigate and correct the cause.

5. Allow the engine to idle for approximately 3 minutes. Idle the engine until the water temperature gauge has begun to rise. Check all gauges during the warm-up period.

Note: Oil pressures and fuel pressures should be in the normal range on the instrument panel. Engines that are equipped with "WARNING" lamps do not have an operating range. The "WARNING and DIAGNOSTIC" lamp (if equipped) will flash while the engine is cranking. The lamp should turn off after proper engine oil pressure or fuel pressure is achieved. Do not apply a load to the engine or increase engine rpm until the oil pressure gauge indicates at least normal pressure. Inspect the engine for leaks and/or unusual noises.
If the engine is operated with a low load, the engine will reach normal operating temperature sooner than idling the engine with no load. When the engine is idled in cold weather, increase the engine rpm to approximately 1000 to 1200 rpm in order to warm up the engine more quickly. Do not exceed the recommended rpm in order to increase the speed of the warm-up. Limit unnecessary idle time to 10 minutes.

Starting Problems
An occasional starting problem may be caused by one of the following items:

- Low battery charge
- Lack of fuel
- Problem with the wiring harness

If the engine fuel system has been run dry, fill the fuel tank and prime the fuel system. Refer to the Operation and Maintenance Manual, "Fuel System - Prime" topic (Maintenance Section).

If the other problems are suspected, perform the appropriate procedure in order to start the engine.

Problems with the Wiring Harness

Starting with Jump Start Cables
(Do Not Use This Procedure in Hazardous Locations that have Explosive Atmospheres)

SMCS Code: 1000; 1401; 1402; 1900

WARNING
The connection of battery cables to a battery and the disconnection of battery cables from a battery may cause an explosion which may result in injury or death. The connection and the disconnection of other electrical equipment may also cause an explosion which may result in injury or death. The procedures for the connection and the disconnection of battery cables and other electrical equipment should only be performed in a nonexplosive atmosphere.

WARNING
Improper jump start cable connections can cause an explosion resulting in personal injury.

Prevent sparks near the batteries. Sparks could cause vapors to explode. Do not allow jump start cable ends to contact each other or the engine.

If the installation is not equipped with a backup battery system, it may be necessary to start the engine from an external electrical source.

First, determine the reason that it is necessary to start with power from an external source. Refer to Special Instruction, SEHS7768, “Use of the 6V-2150 Starting/Charging Analyzer”.

Many batteries which are considered unusable are still rechargeable. After jump starting, the alternator may not be able to fully recharge batteries that are severely discharged. The batteries must be charged to the proper voltage with a battery charger. For information on testing and charging, refer to the Special Instruction, SEHS7633, “Battery Test Procedure”.

Illustration 29 i02049673

ECM Connector J2/P2

Locate the ECM. Check the connector in order to ensure that the connector is secure. Lightly pull each of the wires in the chassis harness.

1. Pull each wire with approximately 4.5 kg (10 lb) of force. The wire should remain in the connector.

2. If a wire is loose, push the wire back into the connector. Pull the wire again in order to ensure that the wire is secure.

3. Start the engine. If the engine does not start, consult the nearest Caterpillar dealer for assistance.
NOTICE

Using a battery source with the same voltage as the electric starting motor. Use ONLY equal voltage for jump starting. The use of higher voltage will damage the electrical system.

Do not reverse the battery cables. The alternator can be damaged. Attach ground cable last and remove first.

When using an external electrical source to start the engine, turn the generator set control switch to the “OFF” position. Turn all electrical accessories OFF before attaching the jump start cables.

Ensure that the main power switch is in the OFF position before attaching the jump start cables to the engine being started.

1. Turn the start switch on the stalled engine to the OFF position. Turn off all accessories.

2. Connect one positive end of the jump start cable to the positive cable terminal of the discharged battery. Connect the other positive end of the jump start cable to the positive cable terminal of the electrical source.

3. Connect one negative end of the jump start cable to the negative cable terminal of the electrical source. Connect the other negative end of the jump start cable to the engine block or to the chassis ground. This procedure helps to prevent potential sparks from igniting combustible gases that are produced by some batteries.

4. Charge the batteries. The engine will not continue to run after starting if the batteries have not been charged.

5. Start the engine.

6. Immediately after the stalled engine is started, disconnect the jump start cables in reverse order.

Refer to the Electrical Schematic for your engine. Consult your Caterpillar dealer for more information.

• Check for fluid or air leaks at idle rpm and at one-half full rpm (no load on the engine) before operating the engine under load. Operating the engine at idle and at one-half full rpm with no load is not possible in some applications.

• Operate the engine at low idle until all systems achieve operating temperatures. Check all gauges during the warm-up period.

Note: Gauge readings should be observed and the data should be recorded frequently while the engine is operating. Comparing the data over time will help to determine normal readings for each gauge. Comparing data over time will also help detect abnormal operating developments. Significant changes in the readings should be investigated.

Extended Idle at Cold Ambient Temperature

The engine may automatically change speeds when the engine is idling in cold ambient temperatures (typically less than 0°C (32°F) for extended periods. The purpose of the automatic speed change is threefold: to maintain the desired operation of the NOx reduction system, to maintain the desired operation of the regeneration system and to keep the engine coolant warm. The engine speed may rise to 1600 rpm for as long as 20 minutes.

The high exhaust system temperature lamp may illuminate during extended idling conditions. This illumination signals that a diesel particulate filter (DPF) regeneration is in progress. Regenerations during cold ambient extended idling may only last up to 10 minutes.

After Starting Engine

SMCS Code: 1000

Note: In temperatures from 0 to 60°C (32 to 140°F), the warm-up time is approximately 3 minutes. In temperatures below 0°C (32°F), additional warm-up time may be required.

When the engine is idling during warm-up, observe the following conditions:
Engine Operation

Correct operation and maintenance are key factors in obtaining the maximum life and economy of the engine. If the directions in the Operation and Maintenance Manual are followed, costs can be minimized and engine service life can be maximized.

The engine can be operated at the rated rpm after the engine reaches operating temperature. The engine will reach normal operating temperature sooner during a low engine speed (rpm) and during a low power demand. This procedure is more effective than idling the engine at no load. The engine should reach operating temperature in a few minutes.

Gauge readings should be observed and the data should be recorded frequently while the engine is operating. Comparing the data over time will help to determine normal readings for each gauge. Comparing data over time will also help detect abnormal operating developments. Significant changes in the readings should be investigated.

Diesel Particulate Filter

Regeneration

Regeneration is the removal of soot from the diesel particulate filter (DPF). The aftertreatment regeneration device (ARD) is used to regenerate the DPF. The DPF traps both soot and ash. The ash is removed through a manual cleaning process. Refer to this Operation and Maintenance Manual, “Diesel Particulate Filter - Clean” for more information about servicing the DPF.
Regeneration Indicator Lamps and Controls

The engine may be equipped with one of the control panels pictured above.

(1) “DPF” Indicator lamp
(2) “HIGH EXHAUST TEMPERATURE” indicator lamp
(3) “REGENERATION DISABLED” indicator lamp
(4) “START KEY” switch
(5) “DIAGNOSTIC” lamp
(6) “SHUTDOWN” lamp
(7) “IDLE SPEED” switch
(8) “REGENERATION” switch enable switch

Note: For further information about the monitoring system, refer to this Operation and Maintenance Manual, “Monitoring System”.

“HIGH EXHAUST SYSTEM TEMPERATURE (HEST)” – This indicator lamp illuminates to show that a regeneration is active. This indicator lamp turns off when the regeneration is complete.

“DPF” – This indicator lamp illuminates to show that a regeneration is needed. This indicator lamp illuminates when the soot level reaches 80%.

“REGENERATION DISABLED” – This indicator lamp illuminates to show that a regeneration has been disabled.

Regeneration Controls

Regeneration Control Switch

“REGENERATION” control switch
The position of the “REGENERATION” switch in the side view is the MIDDLE position.

Note: The MIDDLE position of the switch is the default position for low and high speed regenerations.

Note: Some OEMs use other means of activating a forced regeneration such as a touch screen interface.
“FORCE REGENERATION” – Press and hold in the top of the switch for 3 seconds to start regeneration.

“DISABLE REGENERATION” – Press and hold in the bottom of the switch for 3 seconds to disable regeneration.

Note: To re-enable the regeneration, cycle the engine “START SWITCH KEY” or press and hold in the “FORCE REGENERATION” switch for 2 seconds.

Note: If the engine “START SWITCH KEY” is cycled while the regeneration system is disabled via the “DISABLE REGENERATION” switch, press and hold in the “DISABLE REGENERATION” switch for 3 seconds to reinstate the disable regeneration.

OK to Elevate Idle Switch

Illustration 32 g02333673

“OK to Elevate Idle Switch” switch

The position of the “OK to Elevate Idle Switch” switch in the side view is the LOCKED position.

OK to Elevate Idle Switch – Pressing in and locking the “OK to Elevate Idle” switch enables the engine ECM to elevate engine speed automatically when needed. For example, if the engine is running at low idle and a DPF regeneration is activated, having the “OK to Elevate Idle” switch in the LOCKED position will allow the engine speed to increase in order for the DPF regeneration to occur.

Note: This switch is only available on engines with instrument panels supplied by Cat.

Soot Level Monitoring

Illustration 33 g02228033

The soot level monitor indicates the level of soot that has accumulated within the DPF. The five marks on the monitor represent the percentage of soot within the DPF. The first mark indicates 0% soot level. The second mark indicates 25% soot level. The third mark indicates 50% soot level. The fourth mark indicates 75% soot level. The last mark indicates 100% soot level. The soot level monitor may be used to optimize DPF regenerations based upon the work cycle of the engine. If operating conditions do not allow for automatic regeneration, a manual regeneration should be performed before the soot level gauge indicates 100%

Note: The soot level monitor may not be applied to all engines. Some OEM's may also use a different method of displaying soot load of the DPF. Refer to OEM operation manual for explanation.

Modes of Regeneration

Automatic

The engine control module (ECM) uses multiple electrical inputs from the engine to determine the best time for an automatic regeneration. An automatic regeneration may take place throughout the operating cycle of the engine. An automatic regeneration may start when the engine is at the low idle speed or when the engine is at normal operating speed. The “HEST” indicator lamp is illuminated when a regeneration is being performed.

If an automatic regeneration starts while the engine is at the low idle speed, the engine may be returned to normal work at any time. Returning to normal work may stop the regeneration. The ECM will continue to monitor inputs to determine the best time to restart the regeneration.

Interruptions of the regeneration are acceptable. If a regeneration needs to be stopped for any reason, press the DISABLE REGENERATION switch or turn off the engine.

Note: An automatic adjustment of engine speed may be noticed during an automatic regeneration. If the engine is taken to a low idle speed while a regeneration is occurring, the engine speed may remain elevated in order for the regeneration to continue.
Manual

A manual regeneration is initiated by pressing the “FORCE REGENERATION” switch. A manual regeneration may be performed at a low idle speed or during normal engine operation. The soot loading must be between 15% and 116% for a manual regeneration to occur while the engine is at a low idle speed. The soot loading must be between 15% and 105% for a manual regeneration to occur at normal engine operating speed. The engine coolant temperature should be at least 40° C (104° F).

Disabled

When the regeneration system is in disabled mode, automatic regeneration is not available.

Regeneration System Warning Indicators

The “DPF” indicator lamp illuminates when the DPF soot load is greater than 80%. A regeneration should be performed as soon as possible. Engine operation may not be allowing an automatic regeneration to occur. A manual regeneration should be performed as soon as possible.

The “DPF” indicator lamp will turn off when DPF regeneration starts.

Note: In some situations, the “DPF” indicator lamp may remain illuminated when the soot load is below 80%. The illuminated “DPF” indicator lamp indicates that a complete regeneration has not been completed. A complete regeneration reduces the soot level to 0%. If the “DPF” indicator lamp remains illuminated, perform a regeneration without interruption until the soot level is 0%. A complete regeneration resets the “DPF” indicator lamp.

Engaging the Driven Equipment

SMCS Code: 1000

1. Operate the engine at one-half of the rated rpm, when possible.
2. Engage the driven equipment without a load on the equipment, when possible. Interrupted starts put excessive stress on the drive train. Interrupted starts also waste fuel. To get the driven equipment in motion, engage the clutch smoothly with no load on the equipment. This method should produce a start that is smooth and easy. The engine rpm should not increase and the clutch should not slip.

3. Ensure that the ranges of the gauges are normal when the engine is operating at one-half of the rated rpm. Ensure that all gauges operate properly.

4. Increase the engine rpm to the rated rpm. Always increase the engine rpm to the rated rpm before the load is applied.

5. Apply the load. Begin operating the engine at low load. Check the gauges and equipment for proper operation. After normal oil pressure is reached and the temperature gauge begins to move, the engine may be operated at full load. Check the gauges and equipment frequently when the engine is operated under load.

Extended operation at low idle or at reduced load may cause increased oil consumption and carbon buildup in the cylinders. This carbon buildup results in a loss of power and/or poor performance.

- Observe the service indicator for the air cleaner frequently, if equipped. Keep the air cleaner elements clean.
- Do not remove the cover for the air cleaner unless the air filter service indicator indicates the need for cleaning of the filter.
- Maintain a good electrical system.

One bad battery cell will overwork the alternator. This will consume excess power and excess fuel.

- Ensure that the belts are properly adjusted. The belts should be in good condition.
- Ensure that all of the connections of the hoses are tight. The connections should not leak.
- Ensure that the driven equipment is in good working order.
- Cold engines consume excess fuel. Keep cooling system components clean and keep cooling system components in good repair. Never operate the engine without water temperature regulators. All of these items will help maintain operating temperatures.

Fuel Conservation Practices

SMCS Code: 1000; 1250

The efficiency of the engine can affect the fuel economy. The design and technology used by Caterpillar in manufacturing provides maximum fuel efficiency in all applications. Follow the recommended procedures in order to attain optimum performance for the life of the engine.

- Avoid spilling fuel.

Fuel expands when the fuel is warmed up. The fuel may overflow from the fuel tank. Inspect fuel lines for leaks. Repair the fuel lines, as needed.

- Be aware of the properties of the different fuels. Use only the recommended fuels.

- Avoid unnecessary operation at no load.

Shut off the engine instead of operating the engine at no load for long periods of time.
Cold Weather Operation

Radiator Restrictions

SMCS Code: 1353; 1396

Caterpillar discourages the use of airflow restriction devices that are mounted in front of radiators. Airflow restriction can cause the following conditions:

- High exhaust temperatures
- Power loss
- Excessive fan usage
- Reduction in fuel economy

If an airflow restriction device must be used, the device should have a permanent opening directly in line with the fan hub. A centered opening that is directly in line with the fan hub is specified in order to prevent an interrupted airflow on the fan blades. Interrupted airflow on the fan blades could cause a fan failure.

Caterpillar recommends a warning device for the inlet manifold temperature and/or the installation of an inlet air temperature gauge. The warning device for the inlet manifold temperature should be set at 75 °C (167 °F). The inlet manifold air temperature should not exceed 75 °C (167 °F). Temperatures that exceed this limit can cause power loss and potential engine damage.

Fuel and the Effect from Cold Weather

SMCS Code: 1000; 1250; 1280

The following fuels are the grades that are available for Caterpillar engines:

- No. 1
- No. 2
- Blend of No. 1 and No. 2

No. 2 diesel fuel is the most commonly used fuel. Either No. 1 diesel fuel or a blend of No. 1 and No. 2 is best suited for cold weather operation.

Note: No. 2 diesel fuel can begin to form crystals at approximately −9°C (15°F).

Quantities of No. 1 diesel fuel are limited. No. 1 diesel fuels are usually available during the months of the winter in the colder climates. During cold weather operation, if No. 1 diesel fuel is not available, use No. 2 diesel fuel, if necessary.

Fuel Related Components in Cold Weather

SMCS Code: 1000; 1250; 1280

Fuel Tanks

Condensation can form in partially filled fuel tanks. Top off the fuel tanks after you operate the engine.

Fuel tanks should contain some provision for draining water and sediment from the bottom of the tanks. Some fuel tanks use supply pipes that allow water and sediment to settle below the end of the fuel supply pipe.

Some fuel tanks use supply lines that take fuel directly from the bottom of the tank. If the engine is equipped with this system, regular maintenance of the fuel system filter is important.

Fuel Filters

Cold fuel may contain wax which will block the fuel filters. One of the following changes can prevent problems in many conditions: a change in the location of fuel filters and/or supply lines and the addition of insulation.
Fuel Heaters

In extreme temperatures, heating of the fuel may be required to prevent the filters from plugging. There are several types of fuel heaters that are available. These systems may prevent filter waxing problems without the use of de-icers or cold flow improvers. These systems may be ineffective when the fuel contains a large amount of dirt or of water. A fuel heater should be installed so that the fuel is heated before flowing into the fuel filter.

Note: Only use properly sized fuel heaters that are controlled by thermostats or use fuel heaters that are self-regulated. Thermostatically controlled fuel heaters generally heat fuel to 15.5°C (60°F). Do not use fuel heaters in warm temperatures.

Note: Do not allow the fuel to get too warm, because fuel above 52°C (125°F) will affect the power output of the engine. Never exceed 75°C (165°F) with straight distillate fuel. The high fuel temperatures also affect the fuel viscosity. When the fuel viscosity falls below 1.4 cSt at the fuel injection pump, pump damage may occur.

WARNING

Overheating the fuel or the fuel filter can result in personal injury and/or damage to the engine. Use extreme care and caution for heating of the fuel and/or the fuel filter.

Select a fuel heater that is mechanically simple, yet adequate for the application. The fuel heater should also prevent overheating of the fuel. Disconnect the fuel heater or deactivate the fuel heater in warm weather. An unacceptable loss of fuel viscosity and engine power will occur if the fuel supply temperature is allowed to become too hot.

For additional information on fuel heaters, consult your Caterpillar dealer.
Engine Stopping

Manual Stop Procedure

SMCS Code: 1000; 7418

NOTICE

Stopping the engine immediately after it has been working under load can result in overheating and accelerated wear of the engine components.

If the engine has been operating at high rpm and/or high loads, run at low idle for at least three minutes to reduce and stabilize internal engine temperature before stopping the engine.

Avoiding hot engine shutdowns will maximize turbocharger shaft and bearing life.

Note: Individual applications have different control systems. Ensure that the shutoff procedures are understood. Use the following general guidelines in order to stop the engine.

1. Remove the load from the engine so that the engine has no more than 30% power.

2. Run the engine at the programmed low idle speed for at least 3 minutes.

3. After the cool down period, turn the start switch to the OFF position.

After Stopping Engine

SMCS Code: 1000

Note: After operation, allow 10 minutes for the engine oil to return to the oil pan before checking the engine oil level.

- Check the crankcase oil level. Maintain the oil level between the “ADD” mark and the “FULL” mark on the oil level gauge.

Note: Only use oil that is recommended in this Operation and Maintenance Manual, “Fluid Recommendations” article. Failure to do so may result in engine damage.

- If necessary, perform minor adjustments. Repair any leaks and tighten any loose bolts.

- Note the service hour meter reading. Perform the maintenance that is in the Operation and Maintenance Manual, “Maintenance Interval Schedule”.

- Fill the fuel tank to prevent accumulation of moisture in the fuel. Do not overfill the fuel tank.

- Allow the engine to cool. Check the coolant level. Maintain the cooling system at 13 mm (0.5 inch) from the bottom of the pipe for filling.

Note: Only use coolant that is recommended in this Operation and Maintenance Manual, “Fluid Recommendations” article. Failure to do so may result in engine damage.

- If freezing temperatures are expected, check the coolant for proper antifreeze protection. The cooling system must be protected against freezing to the lowest expected outside temperature. Add the proper coolant/water mixture, if necessary.

- Perform all required periodic maintenance on all driven equipment. This maintenance is outlined in the instructions from the OEM.
The refill capacities for the engine crankcase reflect the approximate capacity of the crankcase or sump plus standard oil filters. Auxiliary oil filter systems will require additional oil. Refer to the OEM specifications for the capacity of the auxiliary oil filter.

C15 and C18 Industrial Engines Approximate Refill Capacities

<table>
<thead>
<tr>
<th></th>
<th>Oil Sump (1)</th>
<th>Engine with 1 Filter</th>
<th>Engine with 2 Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard pan</td>
<td>34 L (36 qt)</td>
<td>36 L (38 qt)</td>
<td></td>
</tr>
<tr>
<td>Center pan</td>
<td>60 L (63 qt)</td>
<td>62 L (66 qt)</td>
<td></td>
</tr>
<tr>
<td>Deep pan</td>
<td>68 L (72 qt)</td>
<td></td>
<td>70 L (74 qt)</td>
</tr>
</tbody>
</table>

(1) These values are approximate capacities for the crankcase oil sump which include the standard oil filters that are installed at the factory. Engines with auxiliary oil filters will require additional oil. Refer to the OEM specifications for the capacity of the auxiliary oil filter.

Coolant Refill Capacity

To maintain the cooling system, the total cooling system capacity must be known. The capacity of the total cooling system will vary. The capacity will depend on the size of the radiator (capacity). Table 5 should be completed by the customer for the maintenance of the cooling system.

Approximate Capacity of the Cooling System

<table>
<thead>
<tr>
<th>Component or System</th>
<th>Liters</th>
<th>Quarts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cooling System (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The total cooling system capacity includes the following components: the engine block, the radiator and all coolant hoses and lines.

Fluid Recommendations

SMCS Code: 1280; 1348; 1395; 7560

NOTICE

Every attempt is made to provide accurate, up-to-date information. By the use of this document, you agree that Caterpillar Inc. is not responsible for errors or omissions.

NOTICE

These recommendations are subject to change without prior notice. Contact your Caterpillar dealer for the most up-to-date recommendations.
Refer to Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations” for additional information.

Refer to this Operation and Maintenance Manual, “Severe Service Application” for information about operating an engine in a severe service application.

Note: Instructions for the installation of the filter are printed on the side of each Cat spin-on filter. For filters that are not Cat filters, refer to the installation instructions that are provided by the supplier of the filter.

Diesel Engine Oil

Cat DEO (Diesel Engine Oil)

Due to significant variations in the quality and in the performance of commercially available oils, Caterpillar makes the following recommendations:

- **Cat DEO-ULS (Diesel Engine Oil Ultra Low Sulfur) (SAE 5W-40)**
- **Cat DEO-ULS (Diesel Engine Oil Ultra Low Sulfur) (SAE 10W-30)**
- **Cat DEO-ULS (Diesel Engine Oil Ultra Low Sulfur) (SAE 15W-40)**

Engine Oil

Cat oils have been developed and tested in order to provide the full performance and life that has been designed and built into Cat engines.

Cat DEO-ULS or oils that meet the Cat ECF-3 specification and the API CJ-4 are required for use in the applications listed below. Cat DEO-ULS and oils meeting Cat ECF-3 specification and the API CJ-4 and ACEA E9 oil categories have been developed with limited sulfated ash, phosphorus, and sulfur. These chemical limits are designed to maintain the expected aftertreatment devices life, performance, and service interval. If oils meeting the Cat ECF-3 specification and the API CJ-4 specifications are not available, oils meeting ACEA E9 may be used. ACEA E9 oils meet the chemical limits designed to maintain aftertreatment device life. ACEA E9 oils are validated using some but not all ECF-3 and API CJ-4 standard engine performance tests. Consult your oil supplier when considering use of an oil that is not Cat ECF-3 or API CJ-4 qualified.

Failure to meet the listed requirements will damage aftertreatment-equipped engines and can negatively impact the performance of the aftertreatment devices. The Diesel Particulate Filter (DPF) will plug sooner and require more frequent DPF ash service intervals.

Typical aftertreatment systems include the following:
- Diesel Particulate Filters (DPF)
- Diesel Oxidation Catalysts (DOC)
- Selective Catalytic Reduction (SCR)
- Lean NOx Traps (LNT)

Other systems may apply.
Table 6

<table>
<thead>
<tr>
<th>Compartment or System</th>
<th>Oil Type and Performance Requirements</th>
<th>Oil Viscosities</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Crankcase</td>
<td>Cat DEO-ULS Cold Weather</td>
<td>SAE 0W-40</td>
<td>−40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Cat DEO-ULS</td>
<td>SAE 10W-30</td>
<td>−18</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Cat DEO-ULS</td>
<td>SAE 15W-40</td>
<td>−9.5</td>
<td>50</td>
</tr>
</tbody>
</table>

NOTICE

Oil Renewal systems should not be used in engines equipped with aftertreatment systems. Reduced life or damage to the aftertreatment may occur.

S·O·S Services Oil Analysis

NOTICE

These recommendations are subject to change without prior notice. Contact your Caterpillar dealer for the most up to date recommendations.

Caterpillar has developed a maintenance tool that evaluates oil degradation. The maintenance management also detects the early signs of wear on internal components. The Cat tool for oil analysis is called S·O·S Oil Analysis and the tool is part of the S·O·S Services program. S·O·S Oil Analysis divides oil analysis into four categories:

- Component wear rate
- Oil condition
- Oil contamination
- Identification of oil

These four types of analysis are used to monitor the condition of your equipment. The four types of analysis will also help you identify potential problems. A properly administered S·O·S Oil Analysis program will reduce repair costs and the program will lessen the impact of downtime.

The S·O·S Oil Analysis program uses a wide range of tests to determine the condition of the oil and the lubricated compartment. Guidelines that are based on experience and a correlation to failures have been established for these tests. Exceeding one or more of these guidelines could indicate serious fluid degradation or a pending component failure. A trained person at your Cat dealership should make the final analysis.

Always use a designated pump for oil sampling, and use a separate designated pump for coolant sampling. Using the same pump for both types of samples may contaminate the samples that are being drawn. This contaminate may cause a false analysis and an incorrect interpretation that could lead to concerns by both dealers and customers.

Refer to Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations” in order to obtain additional information about S·O·S Services oil analysis. You can also contact your local Cat dealer in order to obtain additional information about the S·O·S Services Oil Analysis program.

Diesel Fuel Recommendations
Diesel fuel must meet “Cat Specification for Distillate Fuel” and the latest versions of “ASTM D975” or “EN 590” in order to ensure optimum engine performance. Refer to Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations” for the latest fuel information and for Cat fuel specification. This manual may be found on the Web at Safety.Cat.com.

NOTICE
Ultra Low Sulfur Diesel (ULSD) fuel 0.0015 percent (≤15 ppm (mg/kg)) sulfur is required by regulation for use in engines certified to nonroad Tier 4 standards (U.S. EPA Tier 4 certified) and that are equipped with exhaust aftertreatment systems.

European ULSD 0.0010 percent (≤10 ppm (mg/kg)) sulfur fuel is required by regulation for use in engines certified to European nonroad Stage IIIB and newer standards and are equipped with exhaust aftertreatment systems.

Misfueling with fuels of higher sulfur level can have the following negative effects:

- Shorten the time interval between aftertreatment device service intervals (cause the need for more frequent service intervals)
- Adversely impact the performance and life of aftertreatment devices (cause loss of performance)
- Reduce regeneration intervals of aftertreatment devices
- Reduce engine efficiency and durability.
- Increase the wear.
- Increase the corrosion.
- Increase the deposits.
- Lower fuel economy
- Shorten the time period between oil drain intervals (more frequent oil drain intervals).
- Increase overall operating costs.

Failures that result from the use of improper fuels are not Cat factory defects. Therefore the cost of repairs would not be covered by a Cat warranty.

Cat does not require the use of ULSD in off road and machine applications that are not Tier 4/Stage IIIB certified engines. ULSD is not required in engines that are not equipped with after treatment devices. For Tier 4/Stage IIIB/Stage IV certified engines always follow operating instructions. Fuel tank inlet labels are installed in order to ensure that the correct fuels are used.

Refer to Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations” for more details about fuels, lubricants, and Tier 4 requirements. This manual may be found on the Web at Safety.Cat.com.

Lubricating Grease

NOTICE
These recommendations are subject to change without prior notice. Contact your Caterpillar dealer for the most up to date recommendations.

Cat provides various greases that vary in performance from a moderate performance to high performance. Cat greases service the entire line of Cat products in the wide variety of climates throughout the world. From this variety of Cat grease products, you can find a Cat grease that will meet or exceed the performance requirements of most engines.
The performance requirements of your engine must be determined before you select any Cat grease. Consult the recommendations for greases that are made by the OEM for the equipment. Then, consult with your Cat dealer for a list of greases that have the performance specifications and the available sizes of containers.

Note: Always choose grease that meets or exceeds the recommendations that are specified by the equipment manufacturer for the application.

If choosing a single grease to use for all of the equipment at one site is necessary, always choose a grease that meets or exceeds the requirements of the most demanding application. Remember that the products which barely meet the minimum performance requirements can be expected to produce the minimum lives of your parts. False economy is being used if a grease is purchased with the lowest cost as the only consideration. Instead, use the grease that yields the lowest total operating cost. This cost should be based on an analysis that includes the costs of parts, labor, downtime, and the cost of the amount of grease that is required.

Note: Purge all of the old grease from a joint before you change from one type of grease to another type of grease. Some greases are not chemically compatible with other greases. Consult your supplier in order to determine if the greases are compatible.

If you are not certain that the old grease is compatible with the new grease, purge the old grease from the system before applying the new grease.

Note: All Cat greases are chemically compatible with each other. Mixing of Cat greases does not result in an adverse chemical reaction. However, mixing of Cat greases may result in reduced performance.

Non-Cat commercial greases are as a group second choice greases. Within this grouping of second choice greases, there are tiered levels of performance. For more information, refer to Special Publication, SEBU6251, “Cat Commercial Diesel Engines Fluids Recommendations”.

Coolant

NOTICE
Frequently check the specific gravity of the coolant for proper freeze protection or for anti-boil protection.

NOTICE
Never operate an engine without water temperature regulators in the cooling system. Water temperature regulators help to maintain the engine coolant at the proper operating temperature. Cooling system problems can develop without water temperature regulators.

NOTICE
Never use water alone as a coolant. Water alone is corrosive at engine operating temperatures. In addition, water alone does not provide adequate protection against boiling or freezing.

NOTICE
All Cat engines that are equipped with a Cat NOx Reduction System require a minimum of 50 percent glycol to help prevent cavitation damage and boiling of the engine coolant. These engines include Tier 4 engines.

The following two coolants are used in Cat Diesel Engines:

Preferred – Cat ELC (Extended Life Coolant) or a commercial extended life coolant that meets the Cat Engine Coolant-1 (EC-1) specification.

Acceptable – Cat DEAC (Diesel Engine Antifreeze/Coolant) or a commercial heavy-duty coolant that meets “ASTM D4985”, or “ASTM D6210” specifications.

Note: Cat DEAC does not require a treatment with a Supplemental Coolant Additive (SCA) at the initial fill. However, a commercial heavy-duty coolant that only meets the “ASTM D4985” specification will require a treatment with an SCA at the initial fill. A commercial heavy-duty coolant that meets the “ASTM D6210” specification will not require a treatment with an SCA at the initial fill. Read the label or the instructions that are provided by the manufacturer of the commercial heavy-duty coolant.

Note: These coolants will require a treatment with a supplemental coolant additive on a maintenance basis.

NOTICE
These recommendations are subject to change without prior notice. Contact your Caterpillar dealer for the most up to date recommendations.

NOTICE
Never add coolant to an overheated engine. Engine damage could result. Allow the engine to cool first.
Table 7

<table>
<thead>
<tr>
<th>Coolant</th>
<th>Service Life(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat ELC</td>
<td>12,000 hours, or 6 years</td>
</tr>
<tr>
<td>Commercial coolant that meets the Cat EC-1 specification</td>
<td>6000 hours, or 6 years</td>
</tr>
<tr>
<td>Cat DEAC</td>
<td>3000 hours, or 3 years</td>
</tr>
<tr>
<td>Commercial Heavy-Duty Coolant that meets “ASTM D4985” or “ASTM D6210”</td>
<td>3000 hours, or 1 year</td>
</tr>
</tbody>
</table>

(1) Use the interval that occurs first.

Note: Add the Cat ELC Extender at the halfway point of the coolant change interval.

Note: These coolant change intervals are only possible with annual S·O·S Services Level 2 coolant sampling and analysis.

S·O·S Services Coolant Analysis

Table 8

<table>
<thead>
<tr>
<th>Type of Coolant</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAC</td>
<td>Every 500 Hours(1)</td>
<td>Every 2000 Hours or Yearly(1)(3)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>ELC</td>
<td>Optional(3)</td>
<td>Yearly(3)</td>
</tr>
</tbody>
</table>

(1) This interval is recommended for the sampling of all conventional heavy-duty coolant.
(2) This interval is also recommended for the sampling of a commercial coolant that meets the Cat (Engine Coolant specification - 1) requirement.
(3) The Level 2 coolant analysis should be performed sooner if a problem is suspected or identified.

Testing the engine coolant is important to ensure that the engine is protected from internal cavitation and from corrosion. The analysis also tests the ability of the coolant to protect the engine from boiling and from freezing. The S·O·S Coolant Analysis can be performed at your Cat dealer. Cat S·O·S Coolant Analysis is the best way to monitor the condition of your coolant and your cooling system. S·O·S Coolant Analysis is a program that is based on periodic samples.

NOTICE
Always use a designated pump for oil sampling, and use a separate designated pump for coolant sampling. Using the same pump for both types of samples may contaminate the samples that are being drawn. This contaminate may cause a false analysis and an incorrect interpretation that could lead to concerns by both dealers and customers.
Maintenance Recommendations

System Pressure Release
SMCS Code: 1250; 1300; 1350; 5050

Coolant System

WARNING
Pressurized system: Hot coolant can cause serious burn. To open cap, stop engine, wait until radiator is cool. Then loosen cap slowly to relieve the pressure.

To relieve the pressure from the coolant system, turn off the engine. Allow the cooling system pressure cap to cool. Remove the cooling system pressure cap slowly in order to relieve pressure.

Fuel System

To relieve the pressure from the fuel system, turn off the engine.

High Pressure Fuel Lines (If Equipped)

WARNING
Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

The high pressure fuel lines are the fuel lines that are between the high pressure fuel pump and the high pressure fuel manifold and the fuel lines that are between the fuel manifold and cylinder head. These fuel lines are different from fuel lines on other fuel systems.

This is because of the following differences:

- The high pressure fuel lines are constantly charged with high pressure.
- The internal pressures of the high pressure fuel lines are higher than other types of fuel system.

Before any service or repair is performed on the engine fuel lines, perform the following tasks:

1. Stop the engine.
2. Wait for ten minutes.

Do not loosen the high pressure fuel lines in order to remove air pressure from the fuel system.

Engine Oil

To relieve pressure from the lubricating system, turn off the engine.

Welding on Engines with Electronic Controls
SMCS Code: 1000

NOTICE
Because the strength of the frame may decrease, some manufacturers do not recommend welding onto a chassis frame or rail. Consult the OEM of the equipment or your Cat dealer regarding welding on a chassis frame or rail.

Proper welding procedures are necessary in order to avoid damage to the engine Electronic Control Module (ECM), Clean Emissions Module (CEM), sensors, and associated components. When possible, remove the component from the unit and then weld the component. If removal of the component is not possible, the following procedure must be followed when you weld on a unit that is equipped with a Caterpillar Electronic Engine. The following procedure is considered to be the safest procedure to weld on a component. This procedure should provide a minimum risk of damage to electronic components.

NOTICE
Do not ground the welder to electrical components such as the ECM or sensors. Improper grounding can cause damage to the drive train, the bearings, hydraulic components, electrical components, and other components.

Do not ground the welder across the centerline of the package. Improper grounding could cause damage to the bearings, the crankshaft, the rotor shaft, and other components.

Clamp the ground cable from the welder to the component that will be welded. Place the clamp as close as possible to the weld. This will help reduce the possibility of damage.

Note: Perform the welding in areas that are free from explosive hazards.

1. Stop the engine. Turn the switched power to the OFF position.
2. Disconnect the negative battery cable from the battery. If a battery disconnect switch is provided, open the switch.

3. Disconnect the J1/P1 and J2/P2 connectors from the ECM and. Disconnect the wiring from the CEM. Move the harnesses to a position that will not allow the harnesses to contact with any of the ECM, CEM, or pins accidentally.

Note: If electrical/electronic components are used as a ground for the welder, or electrical/electronic components are located between the welder ground and the weld, current flow from the welder could severely damage the component.

5. Protect the wiring harness from welding debris and spatter.

6. Use standard welding practices to weld the materials.

Severe Service Application

SMCS Code: 1000

An engine which operates outside of normal conditions is operating in a severe service application.

An engine that operates in a severe service application may need more frequent maintenance intervals in order to maximize the following conditions:

- Reliability
- Service life

The number of individual applications cause the impossibility of identifying all of the factors which may contribute to severe service operation. Consult your Cat dealer for the unique maintenance that may be necessary for your engine.

An application is a severe service application if any of the following conditions apply:

Severe Environmental Factors

- Frequent operation in dirty air
- Frequent operation at an altitude which is above 1525 m (5000 ft)
- Frequent operation in ambient temperatures which are above 32° C (90° F)
- Frequent operation in ambient temperatures which are below 0° C (32° F)
Severe Operating Conditions

- Frequent operation with inlet air which has a corrosive content
- Operation with inlet air which has a combustible content
- Operation which is outside of the intended application
- Operation with a plugged fuel filter
- Extended operation at low idle (more than 20% of hours)
- Frequent cold starts at temperatures below 0° C (32° F)
- Frequent dry starts (starting after more than 72 hours of shutdown)
- Frequent hot shutdowns (shutting down the engine without the minimum of 2 minutes to 5 minutes of cool down time)
- Operation above the engine rated speed
- Operation below the peak torque speed
- Operating with fuel which does not meet the standards for distillate diesel fuel as stated in Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations”, “Distillate Diesel Fuel”
- Operating with a blend of distillate fuel which contains more than 20 percent biodiesel

Improper Maintenance Procedures (Maintenance Procedures Which May Contribute to a Severe Service Application)

- Inadequate maintenance of fuel storage tanks from causes such as excessive water, sediment, and microorganism growth.
- Extending maintenance intervals beyond the recommended intervals
- Using fluids which are not recommended in Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations”
- Extending maintenance intervals for changing the engine oil and engine coolant without S·O·S validation
- Extending maintenance intervals for changing air filters, oil filters, and fuel filters
- Failure to use a water separator
- Using filters which are not recommended by Special Publication, PEWJ0074, “2008 Cat Filter and Fluid Application Guide”
Maintenance Interval Schedule
(C15 Engines)

SMCS Code: 1000; 4450; 7500

S/N: LDN1–Up

Ensure that all safety information, warnings, and instructions are read and understood before any operation or any maintenance procedures are performed.

The user is responsible for the performance of all maintenance which includes the following items: performing all adjustments, using proper lubricants, fluids, and filters and replacing old components with new components due to normal wear and aging.

Failure to adhere to proper maintenance intervals and procedures may result in diminished performance of the product and/or accelerated wear of components.

Before each consecutive interval is performed, all maintenance from the previous intervals must be performed.

Choose the interval that occurs first in order to determine the correct maintenance interval: fuel consumption, service hours and calendar time. Products that operate in severe operating conditions may require more frequent maintenance.

All of the following will affect the oil change interval: operating conditions, fuel type, oil type and size of the oil sump. Scheduled oil sampling analyzes used oil in order to determine if the oil change interval is suitable for your specific engine.

Refer to this Operation and Maintenance Manual, "Engine Oil and Filter - Change" in order to determine the oil change interval that is suitable for your specific engine.

To determine the maintenance intervals for the overhauls, refer to this Operation and Maintenance Manual, "Maintenance Recommendations".

When Required

"Battery - Recycle" ...61
"Battery - Replace" ..61
"Battery or Battery Cable - Disconnect"62
"Engine - Clean" ...73
"Engine Air Cleaner Element (Dual Element/Box Type) - Replace" ..73
"Engine Air Cleaner Element (Single Element) - Inspect/Clean/Replace"75
"Engine Storage Procedure - Check"80
"Fuel System - Prime" ...81
"Fuel Tank Water and Sediment - Drain"84
"Radiator - Clean" ...92
"Air Tank Moisture and Sediment - Drain"61
"Coolant Level - Check" ..69
"Driven Equipment - Check"72
"Engine Air Cleaner Service Indicator - Inspect"76
"Engine Oil Level - Check"77
"Fuel System Primary Filter/Water Separator - Drain" ..81
"Power Take-Off Clutch - Check"91
"Walk-Around Inspection"92

Every 250 Service Hours

"Engine Oil Sample - Obtain"78
"Grounding Stud - Inspect/Clean/Tighten"86

Every 500 Service Hours

"Battery Electrolyte Level - Check"62
"Belts - Inspect/Replace" ..63
"Coolant Sample (Level 1) - Obtain"69
"Cooling System Supplemental Coolant Additive (SCA) - Test/Add" ..70
"Engine Oil and Filter - Change"78
"Fuel System Primary Filter (Water Separator) Element - Replace" ...82
"Fuel System Secondary Filter - Replace"83
"Hoses and Clamps - Inspect/Replace"86

Every 2000 Service Hours

"Air Shutoff - Test" ...60
"Fumes Disposal Filter Element - Replace"84

Every 2000 Service Hours or 1 Year

"Coolant Sample (Level 2) - Obtain"70

Every 2500 Service Hours

"Compression Brake - Inspect/Adjust/Replace"64
"Electronic Unit Injector - Check/Replace"72
"Engine Valve Lash - Check"80
Maintenance Interval Schedule

Every 3000 Service Hours or 3 Years
- Valve Actuators - Check
- Coolant (DEAC) - Change
- Electronic Unit Injector - Check/Replace

Every 4000 Service Hours
- Air Compressor - Check
- Engine Mounts - Inspect
- Starting Motor - Inspect

Every 5000 Service Hours
- ARD Spark Plug - Replace
- Diesel Particulate Filter - Clean/Replace
- Fuel Priming Pump - Replace

Every 6000 Service Hours or 3 Years
- Coolant Extender (ELC) - Add

Every 12 000 Service Hours or 6 Years
- Coolant (ELC) - Change

Every 585 000 L (154 540 US gal) of Fuel or 10 000 Service Hours
- Overhaul Considerations

Maintenance Recommendations

Failure to adhere to proper maintenance intervals and procedures may result in diminished performance of the product and/or accelerated wear of components.

Before each consecutive interval is performed, all maintenance from the previous intervals must be performed.

Choose the interval that occurs first in order to determine the correct maintenance interval: fuel consumption, service hours and calendar time. Products that operate in severe operating conditions may require more frequent maintenance.

All of the following will affect the oil change interval: operating conditions, fuel type, oil type and size of the oil sump. Scheduled oil sampling analyzes used oil in order to determine if the oil change interval is suitable for your specific engine.

Refer to this Operation and Maintenance Manual, “Engine Oil and Filter - Change” in order to determine the oil change interval that is suitable for your specific engine.

To determine the maintenance intervals for the overhauls, refer to this Operation and Maintenance Manual, “Maintenance Recommendations”.

When Required

- Battery - Recycle
- Battery - Replace
- Battery or Battery Cable - Disconnect
- Engine - Clean
- Engine Air Cleaner Service Indicator - Inspect
- Engine Oil Level - Check
- Engine Air Cleaner Element (Dual Element/Box Type) - Replace
- Engine Air Cleaner Element (Single Element) - Inspect/Clean/Replace
- Engine Storage Procedure - Check
- Fuel System - Prime
- Fuel System Primary Filter/Water Separator - Drain
- Radiator - Clean

Daily

- Air Tank Moisture and Sediment - Drain
- Coolant Level - Check
- Driven Equipment - Check
- Engine Air Cleaner Service Indicator - Inspect
- Engine Oil Level - Check
- Fuel System Primary Filter/Water Separator - Drain
“Power Take-Off Clutch - Check”...............................91
“Walk-Around Inspection”.................................92

Every 250 Service Hours
“Engine Oil Sample - Obtain”..............................78
“Grounding Stud - Inspect/Clean/Tighten”............86

Initial 500 Service Hours
“Engine Valve Lash - Check”..............................80

Every 500 Service Hours
“Battery Electrolyte Level - Check”......................62
“Belts - Inspect/Replace”..................................63
“Coolant Sample (Level 1) - Obtain”......................69
“Cooling System Supplemental Coolant Additive (SCA) - Test/Add”..70
“Engine Oil and Filter - Change”............................78
“Fuel System Primary Filter (Water Separator) Element - Replace”..82
“Fuel System Secondary Filter - Replace”................83
“Hoses and Clamps - Inspect/Replace”....................86

Every 2000 Service Hours
“Air Shutoff - Test”...60
“Fumes Disposal Filter Element - Replace”............84

Every 2000 Service Hours or 1 Year
“Coolant Sample (Level 2) - Obtain”........................70

Every 2500 Service Hours
“Compression Brake - Inspect/Adjust/Replace”.......64
“Electronic Unit Injector - Check/Replace”.............72
“Engine Valve Lash - Check”..............................80
“Valve Actuators - Check”..................................92

Every 3000 Service Hours or 3 Years
“Coolant (DEAC) - Change”...............................64

Every 4000 Service Hours
“Air Compressor - Check”..................................60
“Engine Mounts - Inspect”..................................77
“Starting Motor - Inspect”..................................92

Every 5000 Service Hours
“ARD Spark Plug - Replace”...............................59
“Diesel Particulate Filter - Clean/Replace”.............71
“Fuel Priming Pump - Replace”............................81

Every 6000 Service Hours or 3 Years
“Coolant Extender (ELC) - Add”.........................68

Every 12 000 Service Hours or 6 Years
“Coolant (ELC) - Change”..................................66

Every 585 000 L (154 540 US gal) of Fuel or 10 000 Service Hours
“Overhaul Considerations”..................................88

Maintenance Interval Schedule
(C18 Engines With Ratings Greater Than 760 HP)
SMCS Code: 1000; 4450; 7500
S/N: BDN1–Up

Ensure that all safety information, warnings, and instructions are read and understood before any operation or any maintenance procedures are performed.

The user is responsible for the performance of all maintenance which includes the following items: performing all adjustments, using proper lubricants, fluids, and filters and replacing old components with new components due to normal wear and aging.

Failure to adhere to proper maintenance intervals and procedures may result in diminished performance of the product and/or accelerated wear of components.

Before each consecutive interval is performed, all maintenance from the previous intervals must be performed.

Choose the interval that occurs first in order to determine the correct maintenance interval: fuel consumption, service hours and calendar time.

Products that operate in severe operating conditions may require more frequent maintenance.

All of the following will affect the oil change interval: operating conditions, fuel type, oil type and size of the oil sump. Scheduled oil sampling analyzes used oil in order to determine if the oil change interval is suitable for your specific engine.
Refer to this Operation and Maintenance Manual, “Engine Oil and Filter - Change” in order to determine the oil change interval that is suitable for your specific engine.

To determine the maintenance intervals for the overhauls, refer to this Operation and Maintenance Manual, “Maintenance Recommendations”.

When Required

- “Battery - Recycle” 61
- “Battery - Replace” 61
- “Battery or Battery Cable - Disconnect” 62
- “Engine - Clean” 73
- “Engine Air Cleaner Element (Dual Element/Box Type) - Replace” 73
- “Engine Air Cleaner Element (Single Element) - Inspect/Clean/Replace” 75
- “Engine Storage Procedure - Check” 80
- “Fuel System - Prime” 81
- “Fuel Tank Water and Sediment - Drain” 84
- “Radiator - Clean” 92

Daily

- “Air Tank Moisture and Sediment - Drain” 61
- “Coolant Level - Check” 69
- “Driven Equipment - Check” 72
- “Engine Air Cleaner Service Indicator - Inspect” 76
- “Engine Oil Level - Check” 77
- “Fuel System Primary Filter/Water Separator - Drain” ... 81
- “Power Take-Off Clutch - Check” 91
- “Walk-Around Inspection” 92

Every 250 Service Hours

- “Engine Oil Sample - Obtain” 78
- “Grounding Stud - Inspect/Clean/Tighten” 86

Initial 500 Service Hours

- “Engine Valve Lash - Check” 80

Every 500 Service Hours

- “Battery Electrolyte Level - Check” 62
- “Belts - Inspect/Replace” 63
- “Coolant Sample (Level 1) - Obtain” 69
- “Cooling System Supplemental Coolant Additive (SCA) - Test/Add” 70
- “Engine Oil and Filter - Change” 78
- “Fuel System Primary Filter (Water Separator) Element - Replace” 82
- “Fuel System Secondary Filter - Replace” 83
- “Hoses and Clamps - Inspect/Replace” 86

Every 2000 Service Hours

- “Air Shutoff - Test” 60
- “Fumes Disposal Filter Element - Replace” 84

Every 2000 Service Hours or 1 Year

- “Coolant Sample (Level 2) - Obtain” 70

Every 2500 Service Hours

- “Compression Brake - Inspect/Adjust/Replace” 64
- “Electronic Unit Injector - Check/Replace” 72
- “Engine Valve Lash - Check” 80
- “Valve Actuators - Check” 92

Every 3000 Service Hours or 3 Years

- “Coolant (DEAC) - Change” 64

Every 4000 Service Hours

- “Air Compressor - Check” 60
- “Engine Mounts - Inspect” 77
- “Starting Motor - Inspect” 92

Every 6000 Service Hours or 3 Years

- “Coolant Extender (ELC) - Add” 68

Every 12 000 Service Hours or 6 Years

- “Coolant (ELC) - Change” 66

Every 760 000 L (200 770 US gal) of Fuel or 10 000 Service Hours

- “Overhaul Considerations” 88
Maintenance Interval Schedule
(C18 Engines)

SMCS Code: 1000; 4450; 7500

S/N: BDN1-Up

Ensure that all safety information, warnings, and instructions are read and understood before any operation or any maintenance procedures are performed.

The user is responsible for the performance of all maintenance which includes the following items: performing all adjustments, using proper lubricants, fluids, and filters and replacing old components with new components due to normal wear and aging.

Failure to adhere to proper maintenance intervals and procedures may result in diminished performance of the product and/or accelerated wear of components.

Before each consecutive interval is performed, all maintenance from the previous intervals must be performed.

Choose the interval that occurs first in order to determine the correct maintenance interval: fuel consumption, service hours and calendar time. Products that operate in severe operating conditions may require more frequent maintenance.

All of the following will affect the oil change interval: operating conditions, fuel type, oil type and size of the oil sump. Scheduled oil sampling analyzes used oil in order to determine if the oil change interval is suitable for your specific engine.

Refer to this Operation and Maintenance Manual, "Engine Oil and Filter - Change" in order to determine the oil change interval that is suitable for your specific engine.

To determine the maintenance intervals for the overhauls, refer to this Operation and Maintenance Manual, "Maintenance Recommendations".

When Required

"Battery - Recycle" ... 61
"Battery - Replace" ... 61
"Battery or Battery Cable - Disconnect" 62
"Engine - Clean" .. 73
"Engine Air Cleaner Element (Dual Element/Box Type) - Replace" ... 73
"Engine Air Cleaner Element (Single Element) - Inspect/Clean/Replace" ... 75
"Engine Storage Procedure - Check" 80

"Fuel System - Prime" ... 81
"Fuel Tank Water and Sediment - Drain" 84
"Radiator - Clean" .. 92

Daily

"Air Tank Moisture and Sediment - Drain" 61
"Coolant Level - Check" ... 69
"Driven Equipment - Check" .. 72
"Engine Air Cleaner Service Indicator - Inspect" 76
"Engine Oil Level - Check" .. 77
"Fuel System Primary Filter/Water Separator - Drain" ... 81
"Power Take-Off Clutch - Check" 91
"Walk-Around Inspection" ... 92

Every 250 Service Hours

"Engine Oil Sample - Obtain" .. 78
"Grounding Stud - Inspect/Clean/Tighten" 86

Every 500 Service Hours

"Battery Electrolyte Level - Check" 62
"Belts - Inspect/Replace" ... 63
"Coolant Sample (Level 1) - Obtain" 69
"Cooling System Supplemental Coolant Additive (SCA) - Test/Add" ... 70
"Engine Oil and Filter - Change" 78
"Fuel System Primary Filter (Water Separator) Element - Replace" ... 82
"Fuel System Secondary Filter - Replace" 83
"Hoses and Clamps - Inspect/Replace" 86

Every 2000 Service Hours

"Air Shutoff - Test" .. 60
"Fumes Disposal Filter Element - Replace" 84

Every 2000 Service Hours or 1 Year

"Coolant Sample (Level 2) - Obtain" 70

Every 2500 Service Hours

"Compression Brake - Inspect/Adjust/Replace" 64
"Electronic Unit Injector - Check/Replace" 72
"Engine Valve Lash - Check" 80
“Valve Actuators - Check” .. 92

Every 3000 Service Hours or 3 Years

“Coolant (DEAC) - Change” .. 64

Every 4000 Service Hours

“Air Compressor - Check” .. 60

“Engine Mounts - Inspect” .. 77

“Starting Motor - Inspect” .. 92

Every 5000 Service Hours

“ARD Spark Plug - Replace” 59

“Diesel Particulate Filter - Clean/Replace” 71

“Fuel Priming Pump - Replace” 81

Every 6000 Service Hours or 3 Years

“Coolant Extender (ELC) - Add” 68

Every 12 000 Service Hours or 6 Years

“Coolant (ELC) - Change” .. 66

Every 760 000 L (200 770 US gal) of Fuel or 10 000 Service Hours

“Overhaul Considerations” 88

ARD Spark Plug - Replace (If Equipped)

SMCS Code: 1555-510

Removing the Spark Plug

NOTICE

If the engine is running or the key is in the ON position the ARD plug will continue to fire. Turn the key to the OFF position before servicing the ARD plug.

ART Spark Plug - Replace

WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

The maximum air pressure for cleaning purposes must be reduced to 205 kPa (30 psi) when the air nozzle is deadheaded.

1. Remove wire harness (1) from spark plug (2).

<table>
<thead>
<tr>
<th>Illustration 43</th>
<th>g02139990</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Wiring harness</td>
<td></td>
</tr>
<tr>
<td>(2) Spark plug</td>
<td></td>
</tr>
</tbody>
</table>

2. Debris may have collected in the spark plug well. Thoroughly remove any debris. Use compressed air. The maximum air pressure for cleaning purposes must be below 205 kPa (30 psi). Ensure that the area around the spark plug is clean and free of dirt and debris.

3. Use a deep well socket and a breaker bar to loosen the spark plug. If necessary, see your Caterpillar dealer for the part number of the socket. After the spark plug has been loosened, use the socket to remove the spark plug by hand in order to detect problems with the threads. After the spark plug has been removed, inspect the used spark plug and the gasket.

If the spark plug could not be removed by hand, clean the threads with a 305-2389 brush. This tool scrapes debris from the seat and from the threads.
NOTICE
Do not use a thread tap. A thread tap will remove metal unnecessarily. The threads could be stripped and the combustion group could be damaged.

Installing the Spark Plug

Note: Do not use anti-seize compound on the spark plug. Most of the heat is transferred through the threads and the seat area of the spark plug. Contact of the metal surfaces must be maintained in order to provide the heat transfer that is required.

1. Ensure that the spark plug is clean and free of dirt and oil.

NOTICE
Do not overtighten the spark plug. The shell can be cracked and the gasket can be deformed. The metal can deform and the gasket can be damaged. The shell can be stretched. This will loosen the seal that is between the shell and the insulator, allowing combustion pressure to blow past the seal. Serious damage to the engine can occur.

Use the proper torque.

2. Install the spark plug by hand until the spark plug contacts the ARD. Torque the spark plug to the proper specification. Refer to Specifications, “Spark Plug” for the proper torque specification.

3. Connect the wiring harness.

Air Compressor - Check
(If equipped)

SMCS Code: 1803-535

WARNING
Do not disconnect the air line from the air compressor governor without purging the air brake and the auxiliary air systems. Failure to purge the air brake and the auxiliary air systems before removing the air compressor and/or the air lines could cause personal injury.

Air Shutoff - Test

SMCS Code: 1078-081

To ensure that the air shutoff valve always shuts down when the engine ingests gaseous fumes, perform the test below at each oil change. A test failure can indicate wear in the block off plate to valve body interface and/or the bearing system.
1. Place engine at low idle speed. Ensure all accessories that are normally used for the application are in use, like a fan, or power takeoffs.

2. Actuate the air shutoff manually. On electrical operator air shutoffs, utilize an applicable power supply or jumper cables from the battery to energize the air shut-off solenoid. Ensure that the solenoid receives only a momentary signal to prevent overheating. On hydraulic operator air shutoffs, found on some hazardous location units, actuate by pulling the emergency stop handle.

3. Ensure that air shutoff was actuated and that the engine comes to a complete stop.

Note: As every application has different parasitic loads and inertia, the duration for the problem to occur cannot be specified. However, if the engine stumbles or attempts to continue running, these symptoms may be an indication that worn components may need replacement.

If additional help is needed, contact the Dealer Solution Network.

NOTICE

Actuating the air shutoff valve may result in oil leakage past the shaft seal in some cases. Repeated actuation of the air shutoff valve during loaded operation of the engine can result in mechanical damage to the turbocharger and reduce turbocharger life.

Air Tank Moisture and Sediment - Drain

(If Equipped)

SMCS Code: 1466-543-M&S

Moisture and sediment in the air starting system can cause the following conditions:

- Freezing
- Corrosion of internal parts
- Malfunction of the air starting system

WARNING

When opening the drain valve, wear protective gloves, a protective face shield, protective clothing, and protective shoes. Pressurized air could cause debris to be blown and result in personal injury.

Battery - Recycle

SMCS Code: 1401-005; 1401-510; 1401-535; 1401-561; 1401

Always recycle a battery. Never discard a battery. Return used batteries to one of the following locations:

- A battery supplier
- An authorized battery collection facility
- A recycling facility

Battery - Replace

SMCS Code: 1401-510

WARNING

Batteries give off combustible gases which can explode. A spark can cause the combustible gases to ignite. This can result in severe personal injury or death.

Ensure proper ventilation for batteries that are in an enclosure. Follow the proper procedures in order to help prevent electrical arcs and/or sparks near batteries. Do not smoke when batteries are serviced.

WARNING

The battery cables or the batteries should not be removed with the battery cover in place. The battery cover should be removed before any servicing is attempted.

Removing the battery cables or the batteries with the cover in place may cause a battery explosion resulting in personal injury.
1. Switch the engine to the OFF position. Remove all electrical loads.

2. Turn off any battery chargers. Disconnect any battery chargers.

3. The NEGATIVE "-" cable connects the NEGATIVE "-" battery terminal to the NEGATIVE "-" terminal on the starter motor. Disconnect the cable from the NEGATIVE "-" battery terminal.

4. The POSITIVE "+" cable connects the POSITIVE "+" battery terminal to the POSITIVE "+" terminal on the starting motor. Disconnect the cable from the POSITIVE "+" battery terminal.

Note: Always recycle a battery. Never discard a battery. Return used batteries to an appropriate recycling facility.

5. Remove the used battery.

6. Install the new battery.

Note: Before the cables are connected, ensure that the engine start switch is OFF.

7. Connect the cable from the starting motor to the POSITIVE "+" battery terminal.

8. Connect the cable from the NEGATIVE "-" terminal on the starter motor to the NEGATIVE "-" battery terminal.

Battery Electrolyte Level - Check

SMCS Code: 1401-535-FLV

When the engine is not run for long periods of time or when the engine is run for short periods, the batteries may not fully recharge. Ensure a full charge in order to help prevent the battery from freezing.

WARNING

All lead-acid batteries contain sulfuric acid which can burn the skin and clothing. Always wear a face shield and protective clothing when working on or near batteries.

1. Remove the filler caps. Maintain the electrolyte level to the "FULL" mark on the battery.

 If the addition of water is necessary, use distilled water. If distilled water is not available use clean water that is low in minerals. Do not use artificially softened water.

2. Check the condition of the electrolyte with the 245 - 5829 Coolant Battery Tester Refractometer.

3. Keep the batteries clean.

 Clean the battery case with one of the following cleaning solutions:
 - A mixture of 0.1 kg (0.2 lb) of baking soda and 1 L (1 qt) of clean water
 - A mixture of 0.1 L (0.11 qt) of ammonia and 1 L (1 qt) of clean water

 Thoroughly rinse the battery case with clean water.

 Use a fine grade of sandpaper to clean the terminals and the cable clamps. Clean the items until the surfaces are bright or shiny. DO NOT remove material excessively. Excessive removal of material can cause the clamps to not fit properly. Coat the clamps and the terminals with 5N-5561 Silicone Lubricant, petroleum jelly or MPGM.

Battery or Battery Cable - Disconnect

SMCS Code: 1401; 1402-029

WARNING

The battery cables or the batteries should not be removed with the battery cover in place. The battery cover should be removed before any servicing is attempted.

Removing the battery cables or the batteries with the cover in place may cause a battery explosion resulting in personal injury.

1. Turn the start switch to the OFF position. Turn the ignition switch (if equipped) to the OFF position and remove the key and all electrical loads.

2. Disconnect the negative battery terminal at the battery that goes to the start switch. Ensure that the cable cannot contact the terminal. When four 12 volt batteries are involved, the negative side of two batteries must be disconnected.

3. Tape the leads in order to help prevent accidental starting.

4. Proceed with necessary system repairs. Reverse the steps in order to reconnect all of the cables.
Belts - Inspect/Replace (If Equipped)

SMCS Code: 1397-040; 1397-510

The engine may be equipped with one of the following types of belts and belt tensioners.

Single Belt

The belt on the engine may look like the belt in Illustration 45 or like the belt in Illustration 45.

For maximum engine performance and maximum utilization of your engine, inspect the belts for wear and for cracking. Replace the belts, if necessary.

To replace the belt, perform the following steps:

1. Insert a ratchet with a square drive into the square hole that is located in the tensioner for the belt. Rotate the tensioner clockwise in order to relieve tension on the belt. Remove the belt.

2. Install the new belt correctly, as shown. Be sure that the belt is fully seated on the pulleys. The correct tension will automatically be applied when the ratchet is removed.
Two or More Belts

Illustration 47
Belt tensioner
(1) Adjustment bolt
(2) 46 mm (1-13/16 inch) jamming locknut (jam nut)
(A) 22 mm (0.87 inch)

Inspection of the Belts

Inspect the fan drive belts for wear and for cracking. Replace the belts if the belts are not in good condition.

Belt Replacement

For applications that require multiple drive belts, replace the drive belts in matched sets. Replacing one drive belt of a matched set will cause the new drive belt to carry more load because the older drive belts are stretched. The additional load on the new drive belt could cause the new drive belt to fail.

Use the following procedure to change the belts.

1. Using a 46 mm (1-13/16 inch) wrench, loosen the jam nut (2).

Note: See figure 47, dimension (A).

2. Loosen the adjustment bolt (1).

3. Remove the old belt and replace with a new belt. Contact your Cat dealer for assistance in choosing and ordering new belts.

4. Tighten the adjustment bolt (1). Use a 144-0235 Belt Tension Gauge to ensure that belt is tensioned according to table 9.

5. Tighten the jam nut to a torque of 200 ± 25 N·m (148 ± 18 lb ft)

Table 9

<table>
<thead>
<tr>
<th>Belt Tension (Initial)</th>
<th>Belt Tension (Used)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>801 ± 44 N (180 ± 10 lb)</td>
<td>378 ± 44 N (85 ± 10 lb)</td>
</tr>
</tbody>
</table>

(1) Belt with over 30 minutes of operation at a rated speed

Belt Adjustment

Repeat steps 1, 4, and 5 from the belt replacement procedure.

Compression Brake - Inspect/Adjust/Replace

SMCS Code: 1119-025; 1119-040; 1119-510

Contact your Cat dealer for assistance in choosing and ordering new belts.

Coolant (DEAC) - Change

SMCS Code: 1350-070; 1395-044

Clean the cooling system and flush the cooling system before the recommended maintenance interval if the following conditions exist:

- The engine overheats frequently.
- Foaming is observed.
- The oil has entered the cooling system and the coolant is contaminated.
- The fuel has entered the cooling system and the coolant is contaminated.

NOTICE

Use of commercially available cooling system cleaners may cause damage to cooling system components. Use only cooling system cleaners that are approved for Caterpillar engines.

Note: Inspect the water pump and the water temperature regulator after the cooling system has been drained.
Illustration 48

The cooling system drain valve is towards the bottom of the radiator.

1. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap.

2. Open the cooling system drain valve. Allow the coolant to drain.

NOTICE
Dispose of used engine coolant properly or recycle. Various methods have been proposed to reclaim used coolant for reuse in engine cooling systems. The full distillation procedure is the only method acceptable by Caterpillar to reclaim the used coolant.

For information regarding the disposal and the recycling of used coolant, consult your Cat dealer or consult Cat Dealer Service Tools Group:
- Outside Illinois 1-800-542-TOOL
- Inside Illinois 1-800-541-TOOL
- Canada 1-800-523-TOOL
- International 1-309-578-7372

Flush

1. Flush the cooling system with clean water in order to remove any debris.

2. Close the drain valve.

NOTICE
Fill the cooling system no faster than 19 L (5 US gal) per minute to avoid air locks.

3. Fill the cooling system with a mixture of clean water and Cat Fast Acting Cooling System Cleaner. Add 0.5 L (1 pt) of cleaner per 15 L (4 US gal) of the cooling system capacity. Install the cooling system filler cap.

4. Start and run the engine at low idle for a minimum of 30 minutes. The coolant temperature should be at least 82 °C (180 °F).

NOTICE
Improper or incomplete rinsing of the cooling system can result in damage to copper and other metal components.

To avoid damage to the cooling system, make sure to completely flush the cooling system with clear water. Continue to flush the system until all signs of the cleaning agent are gone.
5. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap. Open the drain valve. Allow the water to drain. Flush the cooling system with clean water. If equipped, be sure to flush the heater and any related supply and return lines. Close the drain valve.

Cooling Systems with Heavy Deposits or Plugging

Note: For the following procedure to be effective, there must be some active flow through the cooling system components.

1. Flush the cooling system with clean water in order to remove any debris.

2. Close the drain valve.

 Fill

 NOTICE
Fill the cooling system no faster than 19 L (5 US gal) per minute to avoid air locks.

3. Fill the cooling system with a mixture of clean water and Cat Fast Acting Cooling System Cleaner. Add 0.5 L (1 pt) of cleaner per 3.8 to 7.6 L (1 to 2 US gal) of the cooling system capacity. Install the cooling system filler cap.

4. Start and run the engine at low idle for a minimum of 90 minutes. The coolant temperature should be at least 82 °C (180 °F).

 NOTICE
Improper or incomplete rinsing of the cooling system can result in damage to copper and other metal components.

To avoid damage to the cooling system, make sure to completely flush the cooling system with clear water. Continue to flush the system until all signs of the cleaning agent are gone.

5. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap. Open the drain valve. Allow the water to drain. Flush the cooling system with clean water.

Fill

Coolant (ELC) - Change

SMCS Code: 1350-070; 1395-044

Clean the cooling system and flush the cooling system before the recommended maintenance interval if the following conditions exist:

- The engine overheats frequently.
- Foaming is observed.
- The oil has entered the cooling system and the coolant is contaminated.
- The fuel has entered the cooling system and the coolant is contaminated.
Note: When the cooling system is cleaned, only clean water is needed when the ELC is drained and replaced.

Note: Inspect the water pump and the water temperature regulator after the cooling system has been drained.

Drain

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

1. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap.

2. Open the cooling system drain valve.

 Allow the coolant to drain.

NOTICE

Dispose of used engine coolant properly or recycle. Various methods have been proposed to reclaim used coolant for reuse in engine cooling systems. The full distillation procedure is the only method acceptable by Caterpillar to reclaim the used coolant.

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Caterpillar Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Caterpillar Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Caterpillar products.

Dispose of all fluids according to local regulations and mandates.

For information regarding the disposal and the recycling of used coolant, consult your Cat dealer or consult Cat Dealer Service Tool Group:

 Outside Illinois 1-800-542-TOOL
 Inside Illinois 1-800-541-TOOL
 Canada 1-800-523-TOOL
 International 1-309-578-7372

Flush

1. Flush the cooling system with clean water in order to remove any debris.

2. Close the drain valve.

 NOTICE

 Fill the cooling system no faster than 19 L (5 US gal) per minute to avoid air locks.

3. Fill the cooling system with clean water. Install the cooling system filler cap.

4. Start and run the engine at low idle until the temperature reaches 49 to 66 ºC (120 to 150 ºF).

5. Stop the engine and allow the engine to cool. Loosen the cooling system filler cap slowly in order to relieve any pressure. Remove the cooling system filler cap. Open the drain valve. Allow the water to drain. Flush the cooling system with clean water. Close the drain valve.

Fill
NOTICE
Fill the cooling system no faster than 19 L (5 US gal) per minute to avoid air locks.

1. Fill the cooling system with Extended Life Coolant (ELC). Refer to this Operation and Maintenance Manual, “Fluid Recommendations” for more information on cooling system specifications. Do not install the cooling system filler cap.

2. Start and run the engine at low idle. Increase the engine rpm to high idle. Run the engine at high idle for 1 minute in order to purge the air from the cavities of the engine block. Stop the engine.

3. Check the coolant level. Maintain the coolant level within 13 mm (0.5 inch) below the bottom of the pipe for filling. Maintain the coolant level within 13 mm (0.5 inch) to the proper level on the sight glass.

4. Clean the cooling system filler cap. Inspect the gasket that is on the cooling system filler cap. Only install the used filler cap if the gasket is not damaged. Use a 9S-8140 Pressurizing Pump to pressure test a reinstalled cooling system filler cap. The correct pressure for the cooling system filler cap is stamped on the face of the cooling system filler cap. If the cooling system filler cap does not retain the correct pressure, install a new cooling system filler cap.

5. Start the engine. Inspect the cooling system for leaks and for proper operating temperature.

Coolant Extender (ELC) - Add

SMCS Code: 1352-544-NL

Cat ELC (Extended Life Coolant) does not require the frequent additions of any supplemental cooling additives which are associated with the present conventional coolants. The Cat ELC Extender will only be added one time.

NOTICE
Use only Cat Extended Life Coolant (ELC) Extender with Cat ELC.

Do NOT use conventional supplemental coolant additive (SCA) with Cat ELC. Mixing Cat ELC with conventional coolants and/or conventional SCA reduces the Cat ELC service life.

Check the cooling system only when the engine is stopped and cool.

WARNING

Personal injury can result from hot coolant, steam and alkali.

At operating temperature, engine coolant is hot and under pressure. The radiator and all lines to heaters or the engine contain hot coolant or steam. Any contact can cause severe burns.

Remove cooling system pressure cap slowly to relieve pressure only when engine is stopped and cooling system pressure cap is cool enough to touch with your bare hand.

Do not attempt to tighten hose connections when the coolant is hot, the hose can come off causing burns.

Cooling System Coolant Additive contains alkali. Avoid contact with skin and eyes.

NOTICE
Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Cat Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Cat Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.

1. Loosen the cooling system filler cap slowly in order to relieve pressure. Remove the cooling system filler cap.

2. If necessary, drain enough coolant from the cooling system in order to add the Cat ELC Extender.

3. Add Cat ELC Extender according to the requirements for the cooling system capacity. Refer to this Operation and Maintenance Manual, “Refill Capacities” or to this Operation and Maintenance Manual, “Fluid Recommendations” for more information.

4. Clean the cooling system filler cap. Inspect the gaskets on the cooling system filler cap. Replace the cooling system filler cap if the gaskets are damaged. Install the cooling system filler cap.
Coolant Level - Check

SMCS Code: 1395-082

Check the coolant level when the engine is stopped and cool.

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

1. Remove the cooling system filler cap slowly in order to relieve pressure.

2. Maintain the coolant level within 13 mm (0.5 inch) of the bottom of the filler pipe. If the engine is equipped with a sight glass, maintain the coolant level to the proper level in the sight glass.

3. Clean the cooling system filler cap and check the condition of the filler cap gaskets. Replace the cooling system filler cap if the filler cap gaskets are damaged. Reinstall the cooling system filler cap.

4. Inspect the cooling system for leaks.

Coolant Sample (Level 1) - Obtain

SMCS Code: 1350-008; 1395-008; 1395-554; 7542

Note: Obtaining a Coolant Sample (Level 1) is optional if the cooling system is filled with Cat ELC (Extended Life Coolant).

Note: Obtain a Coolant Sample (Level 1) if the cooling system is filled with any other coolant instead of Cat ELC including the following:

- Commercial long life coolants that meet the Caterpillar Engine Coolant Specification -1 (Caterpillar EC-1)
- Cat DEAC (Diesel Engine Antifreeze/Coolant)
- Commercial heavy-duty coolant/antifreeze

Table 10

<table>
<thead>
<tr>
<th>Type of Coolant</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat DEAC or any coolant other than Cat ELC</td>
<td>Every 500 Hours(^{(1)})</td>
<td>Yearly(^{(2)})</td>
</tr>
<tr>
<td>Cat ELC</td>
<td>Optional</td>
<td>Yearly(^{(2)})</td>
</tr>
</tbody>
</table>

(continued)
This interval is the recommended interval for coolant samples for all conventional heavy-duty coolant/antifreeze. This interval is also the recommended interval for coolant samples of commercial coolants that meet the Cat EC-1 specification for engine coolant.

The Level 2 Coolant Analysis should be performed sooner if a problem is suspected or identified.

NOTICE
Always use a designated pump for oil sampling, and use a separate designated pump for coolant sampling. Using the same pump for both types of samples may contaminate the samples that are being drawn. This contaminate may cause a false analysis and an incorrect interpretation that could lead to concerns by both dealers and customers.

Note: Level 1 results may indicate a need for Level 2 Analysis.

Obtain the sample of the coolant as close as possible to the recommended sampling interval. In order to receive the full effect of S·O·S analysis, establish a consistent trend of data. In order to establish a pertinent history of data, perform consistent samplings that are evenly spaced. Supplies for collecting samples can be obtained from your Cat dealer.

Use the following guidelines for proper sampling of the coolant:

- Complete the information on the label for the sampling bottle before you begin to take the samples.
- Keep the unused sampling bottles stored in plastic bags.
- Obtain coolant samples directly from the coolant sample port. You should not obtain the samples from any other location.
- Keep the lids on empty sampling bottles until you are ready to collect the sample.
- Place the sample in the mailing tube immediately after obtaining the sample in order to avoid contamination.
- Never collect samples from expansion bottles.
- Never collect samples from the drain for a system.

Submit the sample for Level 1 analysis.

For additional information about coolant analysis, see this Operation and Maintenance Manual, “Fluid Recommendations” or consult your Cat dealer.

Coolant Sample (Level 2) - Obtain

SMCS Code: 1350-008; 1395-008; 1395-554; 7542

NOTICE
Always use a designated pump for oil sampling, and use a separate designated pump for coolant sampling. Using the same pump for both types of samples may contaminate the samples that are being drawn. This contaminate may cause a false analysis and an incorrect interpretation that could lead to concerns by both dealers and customers.

NOTICE
Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Cat Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Cat Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.

Refer to Operation and Maintenance Manual, “Cooling System Coolant Sample (Level 1) - Obtain” for the guidelines for a proper sampling of the coolant.

Submit the sample for Level 2 analysis.

For additional information about coolant analysis, see Special Publication, SEBU7003, “Cat 3600 Series and C280 Series Diesel Engine Fluids Recommendations” or consult your Cat dealer.

Cooling System Supplemental Coolant Additive (SCA) - Test/Add

(Systems Which are Filled with Conventional Coolant)

SMCS Code: 1352-045; 1395-081

This maintenance procedure is required for conventional coolants such as DEAC. Do not perform this maintenance for cooling systems that are filled with Cat Extended Life Coolant (Cat ELC) or Cat Extended Life Inhibitor (Cat ELI).
WARNING

Cooling system coolant additive contains alkali. To help prevent personal injury, avoid contact with the skin and eyes. Do not drink cooling system coolant additive.

NOTICE

Excessive supplemental coolant additive concentration can form deposits on the higher temperature surfaces of the cooling system, reducing the engine’s heat transfer characteristics. Reduced heat transfer could cause cracking of the cylinder head and other high temperature components.

Excessive supplemental coolant additive concentration could also result in blockage of the heat exchanger, overheating, and/or accelerated wear of the water pump seal.

Do not exceed the recommended amount of supplemental coolant additive concentration.

NOTICE

Do NOT mix brands or types of SCA. Do NOT mix SCAs and extenders.

Failure to follow the recommendations can result in shortened cooling system component life.

NOTICE

Use Only Approved SCAs. Conventional coolants require the maintenance addition of SCA throughout their expected life. Do NOT use an SCA with a coolant unless specifically approved by the coolant supplier for use with their coolant. It is the responsibility of the coolant manufacturer to ensure compatibility and acceptable performance.

Failure to follow the recommendations can result in shortened cooling system component life.

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Cat Dealer Service Tool Catalog” and to Special Publication, GECJ0003, “Cat Shop Supplies and Tools” for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to applicable regulations and mandates.

Note: Caterpillar recommends that an S·O·S Coolant Analysis (Level 1) be performed to check the concentration of SCA.

Maintain the Proper Concentration of SCA in the Coolant

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

1. Remove the cooling system filler cap slowly.

2. Test the concentration of the SCA with a 286-2578 Nitrite Test Strip or review the results of the S·O·S Coolant Analysis (Level 1).

3. If necessary, drain some coolant in order to allow space for the addition of the SCA.

4. Add the amount of SCA required to maintain a concentration of 3 percent to 6 percent SCA in the coolant.

5. Clean the cooling system filler cap. Install the cooling system filler cap.

For further information, refer to Special Publication, SEBU6251, “Cat Commercial Diesel Engine Fluids Recommendations”.

Diesel Particulate Filter - Clean/Replace

(If Equipped)

SMCS Code: 108F-070; 108F-510; 1091-070; 1091-510

Consult your Cat dealer when the DPF needs to be cleaned.

The approved Caterpillar DPF maintenance procedure requires that one of the following actions be taken when the DPF needs to be cleaned:
Driven Equipment - Check

SMCS Code: 3279-535

Check the Alignment

To minimize bearing problems and vibration of the engine crankshaft and the driven equipment, the alignment between the engine and driven equipment must be properly maintained.

Check the alignment according to the instructions that are provided by the following manufacturers:
- Caterpillar
- OEM of the drive coupling
- OEM of the driven equipment

Torque all of the fasteners to the proper specifications.

Inspect the Drive Coupling

Inspect the drive coupling according to the instructions that are provided by the OEM of the coupling. For the following service information, see the literature that is provided by the OEM of the coupling:
- Lubrication requirements
- Specifications for the end play
- “Reusability Guidelines”
- Replacement instructions

Inspect the Rear Gear Train

Inspect the crankshaft gear. If excessive wear is found, replace the crankshaft gear and the large cluster idler.

If any gear causes damage to other gears through failure, replace the entire rear gear train.

For the correct parts, see the Parts Manual for the engine. For removal and replacement instructions, see the Service Manual, “Disassembly and Assembly” module. Consult your Caterpillar dealer for assistance.

Electronic Unit Injector - Check/Replace

SMCS Code: 1251-510; 1251-535; 1290-510; 1290-535

WARNING

Be sure the engine cannot be started while this maintenance is being performed. To prevent possible injury, do not use the starting motor to turn the flywheel.

Hot engine components can cause burns. Allow additional time for the engine to cool before measuring/adjusting the unit injectors.

The electronic unit injectors use high voltage. Disconnect the unit injector enable circuit connector in order to prevent personal injury. Do not come in contact with the injector terminals while the engine is running.

The operation of a Cat Engine with an electronic unit injector which is improperly adjusted may reduce engine efficiency. This reduced efficiency may result in excessive fuel usage and/or shortened engine component life.

Note: Only qualified service personnel should perform this maintenance.

Refer to the Disassembly and Assembly Manual for the procedure for the removal and replacement of the injector.
NOTICE
The camshafts must be correctly timed with the crankshaft before an adjustment of the lash for the fuel injector is made. The timing pins must be removed from the camshafts before the crankshaft is turned or damage to the cylinder block will be the result.

Engine - Clean
SMCS Code: 1000-070

WARNING
Personal injury or death can result from high voltage.

Moisture can create paths of electrical conductivity.

Make sure that the electrical system is OFF. Lock out the starting controls and tag the controls “DO NOT OPERATE”.

NOTICE
Accumulated grease and oil on an engine is a fire hazard. Keep the engine clean. Remove debris and fluid spills whenever a significant quantity accumulates on the engine.

Periodic cleaning of the engine is recommended. Steam cleaning the engine will remove accumulated oil and grease. A clean engine provides the following benefits:

- Easy detection of fluid leaks
- Maximum heat transfer characteristics
- Ease of maintenance

Note: Caution must be used in order to prevent electrical components from being damaged by excessive water when you clean the engine. Avoid electrical components such as the alternator, the starter, and the ECM.

Engine Air Cleaner Element
(Dual Element/Box Type) - Replace
SMCS Code: 1054-510

Primary Filter

NOTICE
Service the primary filter element only when the alert indicator for the intake air filter is flashing. Do not open the filter compartment unless it is time for service. Opening the filter compartment can cause dirt to get into the clean side of the filter housing.

NOTICE
Extremely short air filter life can result if the pre-cleaner system malfunctions. If air filter life is drastically reduced from typical for the operating conditions, consult your Caterpillar Dealer. The exhaust system dust ejector for the strata tube pre-cleaner must pull a minimum vacuum of 508 mm (20 inch) of water.

NOTICE
Service the engine air filters with the engine stopped. Engine damage could result.

NOTICE
Do not use the filter for longer than one year.
1. Remove the air cleaner cover (1). Pull out in order to remove the element.

2. Remove the primary filter element (2) from the air cleaner housing (4).

3. Mark the secondary filter element (3) in order to show that the primary filter element has been serviced. The secondary filter element should be replaced when the primary filter element is serviced for the third time. Refer to the section “Secondary Filter”.

4. Clean the inside of the air cleaner housing (4). Keep the secondary filter element in place while you clean the housing.

5. Install a new primary air filter. Push the filter element firmly in order to properly seat the element. Write the date on the element, if the primary element is replaced.

6. Install the air cleaner cover.

Secondary Filter

NOTICE
Always replace the secondary filter element. Never attempt to reuse the filter by cleaning.

The secondary filter element should be replaced at the time the primary element is serviced for the third time.

Illustration 53 g02105115

1. Open the engine access door.

2. Remove the air cleaner housing cover (1).

3. Remove the primary filter element (2). Refer to the section “Primary Filter”.

4. Clean the inside of the air cleaner housing (4).

5. Remove the secondary filter element (3). Pull out in order to remove the element.

6. Install a new secondary filter element. Push the element firmly in order to properly seat the element. Write the date on the element, if the element is replaced.

7. Install the primary filter element and the air cleaner housing cover.
Engine Air Cleaner Element (Single Element) - Inspect/Clean/Replace

SMCS Code: 1051; 1054-040; 1054-070; 1054-510

NOTICE
Never run the engine without an air cleaner element installed. Never run the engine with a damaged air cleaner element. Do not use air cleaner elements with damaged pleats, gaskets, or seals. Dirt entering the engine causes premature wear and damage to engine components. Air cleaner elements help to prevent airborne debris from entering the air inlet.

NOTICE
Never service the air cleaner element with the engine running since this will allow dirt to enter the engine.

Note: Use of a platform may be necessary to reach the air cleaner element.

Clean the air cleaner elements or replace the air cleaner elements when the following conditions occur:

* Inspect the air cleaner elements before the air filter restriction reaches 2.5 kPa (10 inches of H₂O). A loss of engine performance may occur when the air filter restriction exceeds this limit.

* The air cleaner elements must be cleaned or replaced before the air filter restriction exceeds 3.75 kPa (15 inches of H₂O).

Note: The air filter restriction is measured before the air inlet to the turbocharger compressor.

Servicing the Air Cleaner Elements

Note: If the air cleaner is not manufactured by Caterpillar, follow the instructions that are provided by the OEM of the air cleaner.

If the air cleaner element becomes plugged, the air can split the material of the air cleaner element. Unfiltered air will drastically accelerate internal engine wear. Your Cat dealer has the proper air cleaner elements for your application. Consult your Caterpillar dealer for the correct air cleaner element.

* Check the precleaner (if equipped) daily for accumulation of dirt and debris. Remove any dirt and debris, as needed.

Inspecting Air Cleaner Elements

Inspect the clean, dry air cleaner element. Use a 60 watt blue light in a dark room or in a similar facility. Place the blue light in the element. Rotate the element. Inspect the element for tears and/or holes. Inspect the element for light that may show through the filter material. If it is necessary in order to confirm the result, compare the element to a new element that has the same part number.

Do not use an element that has any tears and/or holes in the filter material. Do not use an element with damaged pleats, gaskets, or seals. Discard damaged elements.

Storing Air Cleaner Elements

If an element that passes inspection will not be used, the element can be stored for future use.
Illustration 55 g00281694

Do not use paint, a waterproof cover, or plastic as a protective covering for storage. Restricted air flow may result. To protect against dirt and damage, wrap the elements in Volatile Corrosion Inhibited (VCI) paper.

Place the element into a box for storage. For identification, mark the outside of the box.

Store the box in a dry location.

Illustration 56 g00103777

Typical service indicator

Observe the service indicator. The air cleaner element should be cleaned or the air cleaner element should be replaced when one of the following conditions occur:

- The yellow diaphragm enters the red zone.
- The red piston locks in the visible position.

Test the Service Indicator

Service indicators are important instruments.

- Check for ease of resetting. The service indicator should reset in less than three pushes.
- Check the movement of the yellow core when the engine is accelerated to the engine rated speed. The yellow core should latch approximately at the greatest vacuum that is attained.

If the service indicator does not reset easily, or if the yellow core does not latch at the greatest vacuum, the service indicator should be replaced. If the new service indicator will not reset, the hole for the service indicator may be plugged.

The service indicator may need to be replaced frequently in environments that are severely dusty, if necessary. Replace the service indicator annually regardless of the operating conditions. Replace the service indicator when the engine is overhauled, and whenever major engine components are replaced.

Note: When a new service indicator is installed, excessive force may crack the top of the service indicator. Tighten the service indicator to a torque of 2 N·m (18 lb in).

Engine Air Cleaner Service Indicator - Inspect (If Equipped)

SMCS Code: 7452-040

Some engines may be equipped with a different service indicator.

Some engines are equipped with a differential gauge for inlet air pressure. The differential gauge for inlet air pressure displays the difference in the pressure that is measured before the air cleaner element and the pressure that is measured after the air cleaner element. As the air cleaner element becomes dirty, the pressure differential rises. If your engine is equipped with a different type of service indicator, follow the OEM recommendations in order to service the air cleaner service indicator.

The service indicator may be mounted on the air cleaner housing or in a remote location.
Engine Mounts - Inspect

SMCS Code: 1152-040; 1152

Inspect the engine mounts for deterioration and for proper bolt torque. Engine vibration can be caused by the following conditions:

- Improper mounting of the engine
- Deterioration of the engine mounts
- Loose mounting bolts

Any engine mount that shows deterioration should be replaced. Refer to the Specifications Manual, SENR3130, “Torque Specifications”. Refer to your Caterpillar dealer for more information.

Engine Oil Level - Check

SMCS Code: 1348-535-FLV

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

NOTICE
Perform this maintenance with the engine stopped.

NOTICE
Engine damage can occur if the crankcase is filled above the “FULL” mark on the oil level gauge (dipstick).

Excessive oil consumption will cause deposits to form on the pistons and in the combustion chamber. Deposits in the combustion chamber lead to the following problems: guttering of the valves, packing of carbon under the piston rings and wear of the cylinder liner.

If the oil level is above the “FULL” mark on the oil level gauge, drain some of the oil immediately.

1. Remove the oil filler cap and check the oil level. Maintain the oil level between the “ADD” mark (Y) and the “FULL” mark (X) on the oil level gauge (1). Do not fill the crankcase above “FULL” mark (X).

2. In order to choose the correct type of oil for this engine, refer to this Operation and Maintenance Manual, “Fluid Recommendations”.

3. Clean the oil filler cap. Install the oil filler cap.

4. Record the amount of oil that is added. For the next oil sample and analysis, include the total amount of oil that has been added since the previous sample. Recording this information helps to provide the most accurate oil analysis.
Engine Oil Sample - Obtain

SMCS Code: 1348-554-SM

In addition to a good preventive maintenance program, Caterpillar recommends using S·O·S oil analysis at regularly scheduled intervals. S·O·S oil analysis provides infrared analysis, which is required for determining nitration and oxidation levels.

Obtain the Sample and the Analysis

WARNING

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

Before you take the oil sample, complete the Label, PEEP5031 for identification of the sample. In order to help obtain the most accurate analysis, provide the following information:

- Engine model
- Service hours on the engine
- The number of hours that have accumulated since the last oil change
- The amount of oil that has been added since the last oil change

To ensure that the sample is representative of the oil in the crankcase, obtain a warm, mixed oil sample.

To avoid contamination of the oil samples, the tools and the supplies that are used for obtaining oil samples must be clean.

Caterpillar recommends using the sampling valve in order to obtain oil samples. The quality and the consistency of the samples are better when the sampling valve is used. The location of the sampling valve allows oil that is flowing under pressure to be obtained during normal engine operation.

The 169-8373 Fluid Sampling Bottle is recommended for use with the sampling valve. The fluid sampling bottle includes the parts that are needed for obtaining oil samples. Instructions are also provided.

NOTICE

Always use a designated pump for oil sampling, and use a separate designated pump for coolant sampling. Using the same pump for both types of samples may contaminate the samples that are being drawn. This contaminate may cause a false analysis and an incorrect interpretation that could lead to concerns by both dealers and customers.

If the engine is not equipped with a sampling valve, use the 1U-5718 Vacuum Pump. The pump is designed to accept sampling bottles. Disposable tubing must be attached to the pump for insertion into the sump.

For instructions, see Special Publication, PEGJ0047, “How To Take A Good S·O·S Oil Sample”. Consult your Cat dealer for complete information and assistance in establishing an S·O·S program for your engine.

Engine Oil and Filter - Change

SMCS Code: 1318-510

WARNING

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

Selection of Oil Change Interval

Refer to this Operation and Maintenance Manual, “Fluid Recommendations” for further information about oils that may be used in Caterpillar engines.

Refer to this Operation and Maintenance Manual, “Severe Service Application” to determine if the oil change interval should be reduced from the normal change interval. If operating in any of the conditions or environments outlined in the Severe Service Application, use S·O·S Services oil analysis to determine the oil change interval. If S·O·S Services oil analysis is not being used, the oil change interval should be reduced to 250 hrs.

Table 11

<table>
<thead>
<tr>
<th>Oil Change Interval (1)</th>
<th>Multigrade Oil Type</th>
<th>Normal</th>
<th>Severe Service Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>(continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Table 11, contd)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat DEO-ULS</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Preferred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil meeting the requirements</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>of the Cat ECF-3 Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or the API CJ-4 classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 minimum TBN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Oil meeting the requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the ACEA C9/E6 Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBN below 10.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Refer to Special Publication, PEHJ0192, "Optimizing Oil Change Intervals" for further information.

Drain the Engine Oil

After the engine has been run at the normal operating temperature, stop the engine. Attach a "DO NOT OPERATE" or a similar warning tag to the ignition keyswitch before the engine is serviced.

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, "Cat Dealer Service Tool Catalog" or refer to Special Publication, PECJ0003, "Cat Shop Supplies and Tools Catalog" for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.

1. Remove the oil drain plug in order to allow the oil to drain.
2. After the oil has drained, the oil drain plug should be cleaned and installed.

Replace the Oil Filter

NOTICE

Caterpillar oil filters are built to Caterpillar specifications. Use of an oil filter not recommended by Caterpillar could result in severe engine damage to the engine bearings, crankshaft, etc., as a result of the larger waste particles from unfiltered oil entering the engine lubricating system. Only use oil filters recommended by Caterpillar.

Illustration 59 g00103713
Typical filter mounting base and filter gasket

1. Remove the filter with a 185-3630 Strap Wrench.
2. Cut the filter open with a 175-7546 Oil Filter Cutter Gp. Break apart the pleats and inspect the oil filter for metal debris. An excessive amount of metal debris in the oil filter may indicate early wear or a pending failure.

Use a magnet to differentiate between the ferrous metals and the nonferrous metals that are found in the oil filter element. Ferrous metals may indicate wear on the steel and cast iron parts of the engine. Nonferrous metals may indicate wear on the aluminum parts, brass parts, or bronze parts of the engine. Parts that may be affected include the following items: main bearings, rod bearings, turbocharger bearings and cylinder heads.

Due to normal wear and friction, small amounts of debris may be found in the oil filter. Consult your Cat dealer in order to arrange for a further analysis if an excessive amount of debris is found in the oil filter.

3. Clean the sealing surface of the filter mounting base. Ensure that all of the old oil filter gasket is removed.
4. Apply clean engine oil to the new oil filter gasket.

NOTICE

Do not fill the oil filters with oil before installing them. This oil would not be filtered and could be contaminated. Contaminated oil can cause accelerated wear to engine components.
5. Install the oil filter. Tighten the oil filter until the oil filter gasket contacts the base. Tighten the oil filter by hand according to the instructions that are shown on the oil filter. Do not overtighten the oil filter.

Fill the Engine Crankcase

1. Remove the oil filler cap. Fill the crankcase with the proper amount of oil. Refer to the Operation and Maintenance Manual, "Fluid Recommendations" topic (Maintenance Section) for more information.

NOTICE

If equipped with an auxiliary oil filter or system, extra oil must be added when filling the crankcase. Follow the OEM or filter manufacturer's recommendations. If the extra oil is not added, the engine may starve for oil.

NOTICE

To help prevent crankshaft or bearing damage, crank engine to fill all filters before starting. Do not crank engine for more than 30 seconds.

2. Start the engine and run the engine at “LOW IDLE” for 2 minutes. Perform this procedure in order to ensure that the lubrication system has oil and that the oil filters are filled. Inspect the oil filter for oil leaks.

3. Stop the engine and allow the oil to drain back to the sump for a minimum of 10 minutes.

4. Remove the oil level gauge in order to check the oil level. Maintain the oil level between the “ADD” and “FULL” marks on the “ENGINE STOPPED” side of the oil level gauge.

Engine Storage Procedure - Check

SMCS Code: 1000-535

The oil change interval may be extended to 12 months for a vehicle that is operated seasonally and placed in storage for the remainder of the year by using the required storage procedures and the required start-up procedures. This extension is permitted if the following categories for oil change intervals in the Operation and Maintenance Manual, “Maintenance Interval Schedule” have not been reached:

- Mileage
- Operating hours
- Fuel consumption

If an engine is out of operation and if use of the engine is not planned, special precautions should be made. If the engine will be stored for more than three months, a complete protection procedure is recommended. For more detailed information on engine storage, see Special Instruction, SEHS9031, “Storage Procedure For Caterpillar Products”.

If the engine will not be started for several weeks, the lubricating oil will drain from the cylinder walls and from the piston rings. Rust can form on the cylinder liner surface. Rust on the cylinder liner surface will cause increased engine wear and a reduction in engine service life. Caterpillar recommends the use of volatile corrosion inhibitor (VCI) oil in order to prevent internal engine damage due to moisture during storage. These inhibitors in the VCI oil act by evaporating inside the engine. The inhibitors then condense over the inside surfaces of the engine. The evaporation process and the condensing process offers full protection to surfaces that cannot be reached with preservatives. 0.9 L (1.0 qt) of 4C-6792 VCI oil will treat 28.4 L (30.0 qt) of engine oil. This will give a 3 percent concentration of VCI oil. The engine must be completely sealed when the engine is stored in order for the VCI oil to function properly. The VCI oil is easily cleaned from the engine when you remove the engine from storage. The volatile vapors are removed by simply running the engine to operating temperature. A mineral oil base is left behind after the volatile vapors are removed.

Engine Valve Lash - Check

SMCS Code: 1105-535

Note: Procedures for adjusting the valve lash can be found in Systems Operation/Testing and Adjusting, “Valve Lash Adjustment”. Consult your Cat dealer for assistance.

WARNING

Ensure that the engine cannot be started while this maintenance is being performed. To help prevent possible injury, do not use the starting motor to turn the flywheel.

Hot engine components can cause burns. Allow additional time for the engine to cool before measuring/adjusting valve lash clearance.
Fuel Priming Pump - Replace

SMCS Code: 1258-510

A replacement kit is available for the electronic fuel priming pump. Contact your Cat dealer for the correct part number and details for your application.

Fuel System - Prime

SMCS Code: 1250-548; 1258-548

NOTICE

Do not allow dirt to enter the fuel system. Thoroughly clean the area around a fuel system component that will be disconnected. Fit a suitable cover over disconnected fuel system component.

1. Turn the engine start switch to the ON position.
 Leave the engine start switch in the ON position for two minutes.

2. Verify that the water separator is full of fuel.

3. If the water separator is not full of fuel, turn the engine start switch OFF and then turn the engine start switch ON. This will cycle the fuel priming pump again.

4. When the water separator is full of fuel, attempt to start the engine. If the engine starts and the engine runs rough or the engine misfires, operate at low idle until the engine is running smoothly. If the engine cannot be started, or if the engine continues to misfire or smoke, repeat Step 1.

Fuel System Primary Filter/Water Separator - Drain

SMCS Code: 1260-543; 1263-543

WARNING

Fuel leaked or spilled onto hot surfaces or electrical components can cause a fire. To help prevent possible injury, turn the start switch off when changing fuel filters or water separator elements. Clean up fuel spills immediately.

Bowl (2) should be monitored daily for signs of water. If water is present, drain the water from the bowl.

1. Open drain (3). The drain is a self-ventilated drain. Catch the draining water in a suitable container. Dispose of the water properly.

2. Close drain (3).

NOTICE

The water separator is under suction during normal engine operation. Ensure that the drain valve is tightened securely to help prevent air from entering the fuel system.
Fuel System Primary Filter (Water Separator) Element - Replace

SMCS Code: 1260-510-FQ; 1263-510-FQ

Water in the fuel can cause the engine to run rough. Water in the fuel may cause an electronic unit injector to fail. If the fuel has been contaminated with water, the element should be changed before the regularly scheduled interval.

The primary filter/water separator also provides filtration in order to help extend the life of the secondary fuel filter. The element should be changed regularly. If a vacuum gauge is installed, the primary filter/water separator should be changed at 50 to 70 kPa (15 to 20 inches Hg).

Replace the Element

WARNING

Fuel leaked or spilled onto hot surfaces or electrical components can cause a fire. To help prevent possible injury, turn the start switch off when changing fuel filters or water separator elements. Clean up fuel spills immediately.

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, "Dealer Service Tool Catalog" for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.

NOTICE

Do not allow dirt to enter the fuel system. Thoroughly clean the area around a fuel system component that will be disconnected. Fit a suitable cover over disconnected fuel system component.

1. Close the main fuel supply valve.

2. Remove element (1) from the element mounting base while bowl (2) is attached.

3. Dispose of the contents of the filter. Remove bowl (2) from element (1). The bowl is reusable. Do not discard the bowl. Dispose of the used element.

4. Remove the O-ring from the gland of the bowl. Clean the following components:
 - Bowl
 - O-ring
 - Mounting base

 Inspect the O-ring for damage and for deterioration. Replace the O-ring, if necessary.

5. Lubricate the O-ring with clean diesel fuel.

6. Install bowl (2) on a new element. Tighten the bowl by hand. Do not use tools in order to tighten the bowl.

7. Lubricate the top seal of element (1) with clean diesel fuel. Install the new element on the mounting base. Tighten the element by hand.
NOTICE
The water separator is under suction during normal engine operation. Ensure that the vent plug is tightened securely to help prevent air from entering the fuel system.

8. Open the main fuel supply valve.

9. Start the engine and check for leaks. Run the engine for 1 minute. Stop the engine and check for leaks again.

Detecting leaks is difficult while the engine is running. The primary filter/water separator is under suction. A leak will allow air to enter the fuel. The air in the fuel can cause low power due to aeration of the fuel. Ensure that the components are correctly installed to prevent air from entering the fuel system.

Fuel System Secondary Filter - Replace

SMCS Code: 1261-510-SE

1. Stop the engine. Turn the ignition switch to the OFF position or disconnect the battery. Refer to this Operation and Maintenance Manual, “Battery or Battery Cable - Disconnect” for more information. Shut off the fuel supply valve (if equipped).

2. It may be necessary to relieve residual fuel pressure from the fuel system before the fuel filters are removed. Wait from 1 minute to 5 minutes until the fuel pressure has lowered. Use a suitable container in order to catch any fuel that may spill.

3. Remove the used fuel filters and discard the used fuel filters.

4. Apply clean diesel fuel to the new fuel filter o-rings.

NOTICE
Do not fill the secondary fuel filter with fuel before installing. The fuel would not be filtered and could be contaminated. Contaminated fuel will cause accelerated wear to fuel system parts.

5. Install the new fuel filters. Spin the fuel filters onto the fuel filter bases until the o-rings contact the bases. Use the rotation index marks on the filters as a guide for proper tightening. Tighten the filters according to the instructions that are on the fuel filters. Do not overtighten the filters.

6. Open the fuel supply valve. The engine will need to be purged of air. Refer to this Operation and Maintenance Manual, “Fuel System - Prime” for more information.

NOTICE
Do not allow dirt to enter the fuel system. Thoroughly clean the area around a fuel system component that will be disconnected. Fit a suitable cover over any disconnected fuel system components.

NOTICE
Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Caterpillar Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Caterpillar Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Caterpillar products.

Dispose of all fluids according to local regulations and mandates.
Fuel Tank Water and Sediment - Drain

SMCS Code: 1273-543-M&S

NOTICE
Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Cat Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Cat Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.

Fuel Tank

Fuel quality is critical to the performance and to the service life of the engine. Water in the fuel can cause excessive wear to the fuel system. Condensation occurs during the heating and cooling of fuel. The condensation occurs as the fuel passes through the fuel system and the fuel returns to the fuel tank. This causes water to accumulate in fuel tanks. Draining the fuel tank regularly and obtaining fuel from reliable sources can help to eliminate water in the fuel.

Drain the Water and the Sediment

Fuel tanks should contain some provision for draining water and draining sediment from the bottom of the fuel tanks.

Prepare to catch water and sediment in an appropriate container. Connect a hose (if necessary) to the valve prior to opening the valve.

Open the drain valve on the bottom of the fuel tank in order to drain the water and the sediment. Close the drain valve.

Note: Failure to close the drain can allow air into the system, which could have detrimental results to performance.

Check the fuel daily. Drain the water and sediment from the fuel tank after operating the engine. Drain the water and sediment from the fuel tank after the fuel tank has been filled. Allow 5 to 10 minutes before performing this procedure.

Fill the fuel tank after operating the engine in order to drive out moist air. This procedure will help prevent condensation. Do not fill the tank to the top. The fuel expands as the fuel gets warm. The tank may overflow.

Some fuel tanks use supply pipes that allow water and sediment to settle below the end of the fuel supply pipe. Some fuel tanks use supply lines that take fuel directly from the bottom of the tank. If the engine is equipped with this system, regular maintenance of the fuel system filter is important.

Fuel Storage Tanks

Drain the water and the sediment from the fuel storage tank during the following conditions:

- Weekly
- Oil change
- Refill of the tank

This procedure will help prevent water or sediment from being pumped from the storage tank into the engine fuel tank. A four micron(c) absolute filter for the breather vent on the fuel tank is also recommended.

If a bulk storage tank has been refilled or moved recently, allow adequate time for the sediment to settle before filling the engine fuel tank. Internal baffles in the bulk storage tank will also help trap sediment. Filtering fuel that is pumped from the storage tank helps to ensure the quality of the fuel. When possible, water separators should be used.

Fumes Disposal Filter Element - Replace

(Open Crankcase Ventilation (OCV) Filter)
The filter for the open crankcase ventilation system may be located toward the front or toward the rear of the left side of the engine. A filter that has been used may contain a small amount of engine oil.

NOTICE
Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the machine. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Caterpillar Tools and Shop Products Guide”, for tools and supplies suitable to collect and contain fluids in Caterpillar machines.

Dispose of all fluids according to local regulations and mandates.

Remove either the cap or the cup from the housing for the OCV filter. Remove the OCV filter. The filter may not be used again. Dispose of the filter. Place a new OCV filter inside the filter housing. If the cap was removed, replace the cap. If the cup was removed, replace the cup. Tighten hand tight.

Note: Caterpillar will not be held liable for an engine that does not comply with EPA emissions standards due to modification of the OCV filter or due to the use of a filter that is not approved by Caterpillar.
Grounding Stud - Inspect/Clean/Tighten

SMCS Code: 7423-040; 7423-070; 7423-079

The grounding stud is located on the upper left corner of the engine control module.

Inspect the OEM harness for good connections. Inspect the condition of the OEM harness.

The grounding stud must have a wire ground to the battery. Tighten the grounding stud at every oil change. Ground wires and straps should be combined at engine grounds. All grounds should be tight and free of corrosion.

- Clean the grounding stud and the terminals for the ground strap with a clean cloth.
- If the connections are corroded, clean the connections with a solution of baking soda and water.
- Keep the grounding stud and the strap clean and coated with MGP grease or petroleum jelly.

Hoses and Clamps - Inspect/Replace

SMCS Code: 7554-040; 7554-510

Hoses and clamps must be inspected periodically and replaced at the recommended interval to ensure safe and continuous operation of the engine. Failure to replace a fuel hose at the recommended change interval may result in a hazardous situation. Take proper safety precautions before inspecting or replacing hoses and clamps.

Note: Always use a board or cardboard when the engine components are checked for leaks. Leaking fluid that is under pressure can cause serious injury or possible death. Leaks that are the size of a pin hole are included. Refer to Operation and Maintenance Manual, “General Hazard Information” for more information.

Inspect the Hoses and the Clamps

Inspect all hoses for leaks that are caused by the following conditions. Replace any hose which exhibits any of the following conditions. Failure to replace a hose which exhibits any of the following conditions may result in a hazardous situation.

- Hoses which are cracked
- Hoses which are soft
- Outer covering that is chafed or cut
- Exposed wire that is used for reinforcement
- Outer covering that is ballooning locally
- Flexible part of the hose that is kinked or crushed
- Armoring that is embedded in the outer covering
- Hoses which exhibit signs of leakage which are not the result of loose couplings or clamps

Inspect all clamps for the following conditions. Replace any clamp which exhibits signs of any of the following conditions.

- Cracking
- Looseness
- Damage

Inspect all couplings for leaks. Replace any coupling which exhibits signs of leaks.

Each installation application can be different. The differences depend on the following factors:

- Type of hose
- Type of fitting material
- Anticipated expansion and contraction of the hose
- Anticipated expansion and contraction of the fittings

Due to extreme temperature changes, the hose will heat set. Heat setting causes hose clamps to loosen which can result in leaks. A constant torque hose clamp will help to prevent loose hose clamps.
Replace hoses that are cracked or soft. Replace hoses that show signs of leakage. Replace hoses that show signs of damage. Replace hose clamps that are cracked or damaged. Tighten or replace hose clamps which are loose.

Replace the Hoses and the Clamps

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting, and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Refer to Special Publication, NENG2500, “Cat Dealer Service Tool Catalog” or refer to Special Publication, PECJ0003, “Cat Shop Supplies and Tools Catalog” for tools and supplies suitable to collect and contain fluids on Cat products.

Dispose of all fluids according to local regulations and mandates.

Cooling System

WARNING

Pressurized System: Hot coolant can cause serious burns. To open the cooling system filler cap, stop the engine and wait until the cooling system components are cool. Loosen the cooling system pressure cap slowly in order to relieve the pressure.

WARNING

Personal injury can result from removing hoses or fittings in a pressure system.

Failure to relieve pressure can cause personal injury.

Do not disconnect or remove hoses or fittings until all pressure in the system has been relieved.

1. Stop the engine.
2. Allow the engine to cool.
3. Before servicing a coolant hose, slowly loosen the filler cap for the cooling system in order to relieve any pressure.
4. Remove the filler cap for the cooling system.
5. Drain the coolant from the cooling system to a level that is below the hose that is being replaced. Drain the coolant into a suitable clean container. The coolant can be reused.
6. Remove the hose clamps.
7. Disconnect the old hose.
8. Replace the old hose with a new hose.
9. Install hose clamps which have been inspected or install new hose clamps. Refer to Specifications, SENR3130, “Torque Specifications”, “Hose Clamps” for information about selecting and installing the proper hose clamps.
10. Refill the cooling system.
11. Clean the filler cap for the cooling system. Inspect the gaskets on the filler cap. Replace the filler cap if the gaskets are damaged. Install the filler cap.
12. Start the engine. Inspect the cooling system for leaks.

Fuel System

WARNING

Personal injury can result from removing hoses or fittings in a pressure system.

Failure to relieve pressure can cause personal injury.

Do not disconnect or remove hoses or fittings until all pressure in the system has been relieved.

WARNING

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

NOTICE

Do not bend or strike high pressure lines. Do not install bent or damaged lines, tubes or hoses. Repair any loose or damaged fuel and oil lines, tubes and hoses. Leaks can cause fires. Inspect all lines, tubes and hoses carefully. Tighten all connections to the recommended torque.
NOTICE
Do not allow dirt to enter the fuel system. Thoroughly clean the area around a fuel system component that will be disconnected. Fit a suitable cover over any disconnected fuel system components.

Note: High-pressure fuel lines may be installed between the high-pressure fuel pump and the fuel injectors. High-pressure fuel lines are constantly charged with high pressure. Do not check the high-pressure fuel lines with the engine or the starting motor in operation. Wait for 10 minutes after the engine stops before you perform any service or repair on high-pressure fuel lines. Waiting for 10 minutes will allow the pressure to be purged.
1. Drain the fuel from the fuel system to a level that is below the hose that is being replaced.

2. Remove the hose clamps.

3. Disconnect the old hose.

Note: When servicing fuel system, use cap/s or cover/s as required to protect the system and maintain fuel system cleanliness.

4. Replace the old hose with a new hose.

5. Install hose clamps which have been inspected or install new hose clamps. Refer to Specifications, SENR3130, "Torque Specifications", "Hose Clamps" for information about selecting and installing the proper hose clamps.

6. Carefully inspect the engine for any spilled fuel.
 Make sure that no fuel remains on or close to the engine.

Note: Fuel must be added to the fuel system ahead of the fuel filter.
7. Refill the fuel system. Refer to this Operation and Maintenance Manual, “Fuel System - Prime” for information about priming the engine with fuel.

8. Start the engine. Inspect the fuel system for leaks.

Air System

1. Remove the hose clamps.

2. Disconnect the old hose.

3. Replace the old hose with a new hose.

4. Install hose clamps which have been inspected or install new hose clamps. Refer to Specifications, SENR3130, "Torque Specifications", "Hose Clamps" for information about selecting and installing the proper hose clamps.

5. Start the engine. Inspect the air lines for leaks.

Note: The bellows and the V-clamps that are used on the bellows should never be reused.

Overhaul Considerations

SMCS Code: 7595-043

Reduced hours of operation at full load will result in a lower average power demand and reduced fuel consumption. A decreased average power demand should increase both the engine service life and the overhaul interval.

The need for an overhaul is indicated by increased fuel consumption, increased oil consumption, excessive engine blowby, and reduced power. Arctic temperatures, extreme high temperatures, corrosive environments, or extreme dusty conditions contribute to premature wear and the need for an overhaul.

Lubrication System

WARNING
Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

1. Drain the oil from the lubrication system to a level that is below the hose that is being replaced.
The following factors are important when a decision is being made on the proper time for an engine overhaul:

- The need for preventive maintenance
- The quality of the fuel that is being used
- The operating conditions
- The results of the S·O·S analysis

Note: The aftertreatment system can be expected to function properly for the useful life of the engine (emissions durability period), as defined by regulation, subject to prescribed maintenance requirements being followed.

Oil Consumption as an Overhaul Indicator

Oil consumption, fuel consumption, and maintenance information can be used to estimate the total operating cost for your Caterpillar engine. Oil consumption can also be used to estimate the required capacity of a makeup oil tank that is suitable for the maintenance intervals.

Oil consumption is in proportion to the percentage of the rated engine load. As the percentage of the engine load is increased, the amount of oil that is consumed per hour also increases.

The oil consumption rate (brake-specific oil consumption) is measured in grams per kW·h (lb per bhp). The brake-specific oil consumption (BSOC) depends on the engine load. Consult your Caterpillar dealer for assistance in determining the typical oil consumption rate for your engine.

When the oil consumption of an engine has risen to three times the original oil consumption rate due to normal wear, an engine overhaul should be scheduled. There may be a corresponding increase in blowby and a slight increase in fuel consumption.

Overhaul Options

Before Failure Overhaul

A planned overhaul before failure may be the best value for the following reasons:

- Costly unplanned downtime can be avoided.
- Many original parts can be reused according to the standards for reusable parts.
- The service life of the engine can be extended without the risk of a major catastrophe due to engine failure.
- The best cost/value relationship per hour of extended life can be attained.

After Failure Overhaul

If a major engine failure occurs and the engine must be removed, many options are available. An overhaul should be performed if the engine block or the crankshaft needs to be repaired.

If the engine block is repairable and/or the crankshaft is repairable, the overhaul cost should be between 40 percent and 50 percent of the cost of a new engine with a similar exchange core.

This lower cost can be attributed to three aspects:

- Specially designed Caterpillar engine features
- Caterpillar dealer exchange components
- Caterpillar Inc. remanufactured exchange components

Overhaul Recommendation

To minimize downtime, Caterpillar Inc. recommends a scheduled engine overhaul by your Caterpillar dealer before the engine fails. A scheduled engine overhaul will provide you with the best cost/value relationship.

Note: Overhaul programs vary according to the engine application and according to the dealer that performs the overhaul. Consult your Caterpillar dealer for specific information about the available overhaul programs and about overhaul services for extending the engine life.

If an overhaul is performed without overhaul service from your Caterpillar dealer, be aware of the following maintenance recommendations.

Rebuild or Exchange

Cylinder Head Assembly, Cylinder Packs, Oil Pump, and Fuel Transfer Pump

These components should be inspected according to the instructions that are found in various Caterpillar reusability publications. The Special Publication, SEBF8029 lists the reusability publications that are needed for inspecting the engine parts.

If the parts comply with the established inspection specifications that are expressed in the reusable parts guideline, the parts should be reused.

Parts that are not within the established inspection specifications should be dealt with in one of the following manners:

- Salvaging
- Repairing
- Replacing
Using out-of-spec parts can result in the following problems:

- Unscheduled downtime
- Costly repairs
- Damage to other engine parts
- Reduced engine efficiency
- Increased fuel consumption

Reduced engine efficiency and increased fuel consumption translates into higher operating costs. Therefore, Caterpillar Inc. recommends repairing out-of-spec parts or replacing out-of-spec parts.

Inspection and/or Replacement

Crankshaft Bearings, Valve Rotators, and Crankshaft Seals

The following components may not last until the second overhaul.

- Thrust bearings
- Main bearings
- Rod bearings
- Valve rotators
- Crankshaft seals

Caterpillar Inc. recommends the installation of new parts at each overhaul period.

Inspect these parts while the engine is disassembled for an overhaul.

Inspect the crankshaft for any of the following conditions:

- Deflection
- Damage to the journals
- Bearing material that has seized to the journals

Check the journal taper and the profile of the crankshaft journals. Check these components by interpreting the wear patterns on the following components:

- Rod bearing
- Main bearings

Inspect the camshaft for damage to the journals and to the lobes.

Note: If the camshaft is removed for any reason, use the magnetic particle inspection process to check for cracks in the camshaft.

Inspect the following components for signs of wear or for signs of scuffing:

- Camshaft bearings
- Camshaft followers

Caterpillar Inc. recommends replacing the crankshaft vibration damper.

Oil Cooler Core

During an overhaul, Caterpillar Inc. recommends the removal of the oil cooler core. Clean the oil cooler core. Then, pressure test the oil cooler core.

NOTICE

Do not use caustic cleaners to clean the core.

Caustic cleaners can attack the internal metals of the core and cause leakage.

Note: Use this cleaning procedure to clean the oil cooler core.

1. Remove the oil cooler core.
2. Remove any debris from the oil cooler core. To remove debris from the oil cooler core, turn the oil cooler core onto one end.
3. Flush the oil cooler core internally with cleaner in order to loosen foreign substances. Flushing the oil cooler core will also help to remove oil from the oil cooler core.

Note: Caterpillar Inc. recommends the use of Hydrosolv Liquid Cleaners. Table 12 lists the Hydrosolv Liquid Cleaners that are available from your Caterpillar dealer.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U-5490</td>
<td>Hydrosolv 4165</td>
<td>19 L (5 US gallon)</td>
</tr>
<tr>
<td>174-6854</td>
<td>Hydrosolv 100</td>
<td>19 L (5 US gallon)</td>
</tr>
</tbody>
</table>

4. Use steam to clean the oil cooler core. Steam-cleaning the oil cooler core removes any remaining residue from the cleaner. Flush the fins of the oil cooler core. Remove any other trapped debris.
5. Wash the oil cooler core with hot, soapy water. Rinse the oil cooler core thoroughly with clean water.
WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

Maximum air pressure at the nozzle must be less than 205 kPa (30 psi) for cleaning purposes.

6. Dry the oil cooler core with compressed air. Direct the air in the reverse direction of the normal flow.

7. Inspect the components in order to ensure cleanliness. The oil cooler core should be pressure tested. Repair the oil cooler core, if necessary. Install the oil cooler core.

For more information about cleaning the cores, consult your Caterpillar dealer.

Obtain Coolant Analysis

The concentration of supplemental coolant additive (SCA) should be checked regularly with test kits or with S·O·S Coolant Analysis (Level 1). Further coolant analysis is recommended when the engine is overhauled.

For example, considerable deposits are found in the water jacket areas on the external cooling system, but the concentrations of coolant additives were carefully maintained. The coolant water probably contained minerals that were deposited on the engine over time.

A coolant analysis can be conducted in order to verify the condition of the water that is being used in the cooling system. A full water analysis can be obtained by consulting your local water utility company or an agricultural agent. Private laboratories are also available for water analysis.

Caterpillar Inc. recommends an S·O·S Coolant Analysis (Level 2).

S·O·S Coolant Analysis (Level 2)

An S·O·S Coolant Analysis (Level 2) is a comprehensive coolant analysis which completely analyzes the coolant and the effects on the cooling system. An S·O·S Coolant Analysis (Level 2) provides the following information:

- Complete S·O·S Coolant Analysis (Level 1)
- Visual inspection of properties
- Identification of metal corrosion
- Identification of contaminants
- Identification of built up impurities (corrosion and scale)

S·O·S Coolant Analysis (Level 2) provides a report of the results of both the analysis and the maintenance recommendations.

For more information about coolant analysis, see your Caterpillar dealer.

Power Take-Off Clutch - Check

SMCS Code: 3055-535

NOTICE

New power take-offs should have the clutch adjustment checked before being placed into service. The clutch adjustment should be checked again after the first ten hours of operation. New clutch plates have a "wear in" period, and the clutch may require several adjustments until the new plates are "worn in".

Check the clutch adjustment regularly after "wear in". Heavy-duty applications which have engagements that are frequent and relatively long periods of clutch slippage require more frequent adjustment than light-duty applications. The operating torque should be measured in order to determine if a clutch adjustment is required.

Refer to the OEM information and instruction plate (1) for instructions on lubrication, adjustment, and other recommendations for service. Perform the maintenance that is specified on the instruction plate.
WARNING

Do not operate the engine with the Instruction Plate cover removed from the clutch. Personal injury may result.

If the clutch is damaged to the point of burst failure, expelled pieces can cause personal injury to anyone in the immediate area. Proper safeguards must be followed to help prevent accidents.

Radiator - Clean

SMCS Code: 1353-070

Note: Adjust the frequency of cleaning according to the effects of the operating environment.

Inspect the radiator for these items: damaged fins, corrosion, dirt, grease, insects, leaves, oil and other debris. Clean the radiator, if necessary.

WARNING

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

The maximum air pressure for cleaning purposes must be reduced to 205 kPa (30 psi) when the air nozzle is deadheaded.

Pressurized air is the preferred method for removing loose debris. Direct the air in the opposite direction of the air flow. Hold the nozzle approximately 6 mm (0.25 inch) away from the fins. Slowly move the air nozzle in a direction that is parallel with the tubes. This movement will remove debris that is between the tubes.

Pressurized water may also be used for cleaning. The maximum water pressure for cleaning purposes must be less than 275 kPa (40 psi). Use pressurized water in order to soften mud. Clean the core from both sides.

Use a degreaser and steam for removal of oil and grease. Clean both sides of the core. Wash the core with detergent and hot water. Thoroughly rinse the core with clean water.

After cleaning, start the engine and accelerate the engine to high idle rpm. This procedure will help in the removal of debris and drying of the core. Stop the engine. Use a light bulb behind the core in order to inspect the core for cleanliness. Repeat the cleaning, if necessary.

Inspect the fins for damage. Bent fins may be opened with a "comb". Inspect these items for good condition: welds, mounting brackets, air lines, connections, clamps and seals. Make repairs, if necessary.

Starting Motor - Inspect

SMCS Code: 1451-040; 1453-040

Caterpillar Inc. recommends a scheduled inspection of the starting motor. If the starting motor fails, the engine may not start in an emergency situation.

Check the starting motor for proper operation. Check the electrical connections and clean the electrical connections. Refer to the Service Manual for more information on the checking procedure and for specifications or consult your Caterpillar dealer for assistance.

Valve Actuators - Check

SMCS Code: 1105-535

The valve actuators should be inspected and adjusted when adjustments to the following components occur.

- Valves
- Injectors
- Compression brakes

Contact your Cat dealer for the proper procedure.

Walk-Around Inspection

SMCS Code: 1000-040

Inspect the Engine for Leaks and for Loose Connections

A walk-around inspection should only take a few minutes. When the time is taken to perform these checks, costly repairs and accidents can be avoided.

For maximum engine service life, make a thorough inspection of the engine compartment before starting the engine. Look for items such as oil leaks or coolant leaks, loose bolts, worn belts, loose connections and trash buildup. Make repairs, as needed:
• The guards must be in the proper place. Repair damaged guards or replace missing guards.

• Wipe all caps and plugs before the engine is serviced in order to reduce the chance of system contamination.

NOTICE

For any type of leak (coolant, lube, or fuel) clean up the fluid. If leaking is observed, find the source and correct the leak. If leaking is suspected, check the fluid levels more often than recommended until the leak is found or fixed, or until the suspicion of a leak is proved to be unwarranted.

NOTICE

Accumulated grease and/or oil on an engine or deck is a fire hazard. Remove this debris with steam cleaning or high pressure water.

• Ensure that the cooling lines are properly clamped and that the cooling lines are tight. Check for leaks. Check the condition of all pipes.

• Inspect the water pumps for coolant leaks.

Note: The water pump seal is lubricated by coolant in the cooling system. It is normal for a small amount of leakage to occur as the engine cools down and the parts contract.

Excessive coolant leakage may indicate the need to replace the water pump seal. For the removal of water pumps and the installation of water pumps and/or seals, refer to the Service Manual for the engine or consult your Caterpillar dealer.

• Inspect the lubrication system for leaks at the front crankshaft seal, the rear crankshaft seal, the oil pan, the oil filters and the valve cover.

• Inspect the fuel system for leaks. Look for loose fuel line clamps or for loose fuel line tie-wraps.

• Inspect the piping for the air inlet system and the elbows for cracks and for loose clamps. Ensure that hoses and tubes are not contacting other hoses, tubes, wiring harnesses, etc.

• Inspect the alternator belt and the accessory drive belts for cracks, breaks or other damage.

Belts for multiple groove pulleys must be replaced as matched sets. If only one belt is replaced, the belt will carry more load than the belts that are not replaced. The older belts are stretched. The additional load on the new belt could cause the belt to break.

• Drain the water and the sediment from fuel tanks on a daily basis in order to ensure that only clean fuel enters the fuel system.

• Inspect the wiring and the wiring harnesses for loose connections and for worn wires or frayed wires.

• Inspect the ground strap for a good connection and for good condition.

• Inspect the ECM to the cylinder head ground strap for a good connection and for good condition.

• Disconnect any battery chargers that are not protected against the current drain of the starting motor. Check the condition and the electrolyte level of the batteries, unless the engine is equipped with a maintenance free battery.

• Check the condition of the gauges. Replace any gauges that are cracked. Replace any gauge that can not be calibrated.
Warranty Section

Emissions Warranty Information

SMCS Code: 1000

The certifying engine manufacturer warrants to the ultimate purchaser and each subsequent purchaser that:

1. New non-road diesel engines and stationary diesel engines less than 10 liters per cylinder (including Tier 1 and Tier 2 marine engines < 37 kW, but excluding locomotive and other marine engines) operated and serviced in the United States and Canada, including all parts of their emission control systems (“emission related components”), are:
 a. Designed, built, and equipped so as to conform, at the time of sale, with applicable emission standards prescribed by the United States Environmental Protection Agency (EPA) by way of regulation.
 b. Free from defects in materials and workmanship in emission-related components that can cause the engine to fail to conform to applicable emission standards for the warranty period.

2. New non-road diesel engines (including Tier 1 and Tier 2 marine propulsion engines < 37 kW and Tier 1 through Tier 4 marine auxiliary engines < 37 kW, but excluding locomotive and other marine engines) operated and serviced in the state of California, including all parts of their emission control systems (“emission related components”), are:
 a. Designed, built, and equipped so as to conform, at the time of sale, to all applicable regulations adopted by the California Air Resources Board (ARB).
 b. Free from defects in materials and workmanship which cause the failure of an emission-related component to be identical in all material respects to the component as described in the engine manufacturer’s application for certification for the warranty period.

A detailed explanation of the Emission Control Warranty that is applicable to new non-road and stationary diesel engines, including the components covered and the warranty period, is found in a supplemental Special Publication. Consult your authorized Cat dealer to determine if your engine is subject to an Emission Control Warranty and to obtain a copy of the applicable Special Publication.
Reference Information Section

Engine Ratings

Engine Rating Conditions

SMCS Code: 1000

All engine ratings are based on “SAE J1349”.

Ratings relate to the standard conditions of “AS1501”, of “ISO3046/1”, of “DIN6271”, and of “BS5514”.

The engine ratings are gross output ratings.

Gross Output Ratings – The total output capability of the engine that is equipped with standard accessories.

Standard accessories include the following components:

- Oil pumps
- Fuel pumps
- Water pumps

Subtract the power that is required to drive auxiliary components from the gross output. This will produce the net power that is available for the external load (flywheel).

<table>
<thead>
<tr>
<th>Performance Rating</th>
<th>Load Factor</th>
<th>Time at Rated Load(1)</th>
<th>Examples of Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100%</td>
<td>100%</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>85%</td>
<td>75%</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>70%</td>
<td>50%</td>
<td>Less than 1 hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>50%</td>
<td>10%</td>
<td>Less than 30 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>35%</td>
<td>5%</td>
<td>Less than 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Both the overall time at rated load and the time the engine is operated in any one instance must be considered.

NOTICE

Operating engines above the rating definitions can result in shorter service life before overhaul.

Engine Rating Definitions

SMCS Code: 1000

In selecting a rating for a specific application, the most important consideration is the time that is spent at full throttle. These rating definitions identify the percent of time at full throttle. The definitions also identify the corresponding times below rated rpm.

Refer to this Operation and Maintenance Manual, “Configuration Parameters” for information about the rating for this engine.

Note: The examples of the applications are only for reference. For an exact determination of the appropriate rating, follow the OEM specifications or consult your Caterpillar dealer.
Customer Service

Customer Assistance

SMCS Code: 1000; 4450

USA and Canada

When a problem arises concerning the operation or the service of an engine, the problem will normally be managed by the dealer in your area.

Your satisfaction is a primary concern to Caterpillar and to Caterpillar dealers. If you have a problem that has not been handled to your complete satisfaction, follow these steps:

1. Discuss your problem with a manager from the dealership.

2. If your problem cannot be resolved at the dealer level, use the phone number that is listed below to talk with a Field Service Coordinator:

 1-800-447-4986

 The normal hours are from 8:00 to 4:30 Monday through Friday Central Standard Time.

3. If your needs have not been met still, submit the matter in writing to the following address:

 Caterpillar Inc.
 Manager, Customer Service, Engine Division
 Mossville Bldg AC
 P.O. Box 610
 Mossville, Illinois 61552-0610

 Please keep in mind: probably, your problem will ultimately be solved at the dealership, using the dealership facilities, equipment, and personnel. Therefore, follow the steps in sequence when a problem is experienced.

Outside of the USA and of Canada

If a problem arises outside the USA and outside Canada, and if the problem cannot be resolved at the dealer level, consult the appropriate Caterpillar office.

 Latin America, Mexico, Carribean
 Caterpillar Americas Co.
 701 Waterford Way, Suite 200
 Miami, FL 33126-4670
 USA
 Phone: 305-476-6800
 Fax: 305-476-6801

 Europe, Africa, and Middle East
 Caterpillar Overseas S.A.
 76 Route de Frontenex
 P.O. Box 6000
 CH-1211 Geneva 6
 Switzerland
 Phone: 22-849-4444
 Fax: 22-849-4544

 Far East
 Caterpillar Asia Pte. Ltd.
 7 Tractor Road
 Jurong, Singapore 627968
 Republic of Singapore
 Phone: 65-662-8333
 Fax: 65-662-8302

 China
 Caterpillar China Ltd.
 37/F., The Lee Gardens
 33 Hysan Avenue
 Causeway Bay
 G.P.O. Box 3069
 Hong Kong
 Phone: 852-2848-0333
 Fax: 852-2848-0440

 Japan
 Shin Caterpillar Mitsubishi Ltd.
 SBS Tower
 10-1, Yoga 4-Chome
 Setagaya-Ku, Tokyo 158-8530
 Japan
 Phone: 81-3-5717-1150
 Fax: 81-3-5717-1177

 Japan
 Caterpillar Power Systems, Inc.
 SBS Tower (14th floor)
 4-10-1, Yoga
 Setagaya-Ku, Tokyo 158-0097
 Phone: 81-3-5797-4300
 Fax: 81-3-5797-4359

 Australia and New Zealand
 Caterpillar of Australia Ltd.
 1 Caterpillar Drive
 Private Mail Bag 4
 Tullamarine, Victoria 3043
 Australia
 Phone: 03-9953-9333
 Fax: 03-9335-3366
Ordering Replacement Parts

SMCS Code: 4450; 7567

WARNING

When replacement parts are required for this product Caterpillar recommends using Caterpillar replacement parts or parts with equivalent specifications including, but not limited to, physical dimensions, type, strength and material.

Failure to heed this warning can lead to premature failures, product damage, personal injury or death.

Quality Caterpillar replacement parts are available from Caterpillar dealers throughout the world. Caterpillar dealers' parts inventories are up-to-date. The parts stocks include all of the parts that are normally needed to protect your Caterpillar engine investment.

When you order parts, please specify the following information:

- Part number
- Part name
- Quantity

If there is a question concerning the part number, please provide your dealer with a complete description of the needed item.

When a Caterpillar engine requires maintenance and/or repair, provide the dealer with all the information that is stamped on the Information Plate. This information is described in this Operation and Maintenance Manual (Product Information Section).

Discuss the problem with the dealer. Inform the dealer about the conditions of the problem and the nature of the problem. Inform the dealer about when the problem occurs. This will help the dealer in troubleshooting the problem and solving the problem faster.
Caterpillar Inc. recommends the retention of accurate maintenance records. Accurate maintenance records can be used for the following purposes:

- Determine operating costs.
- Establish maintenance schedules for other engines that are operated in the same environment.
- Show compliance with the required maintenance practices and maintenance intervals.

Maintenance records can be used for various other business decisions that are related to engine maintenance.

Maintenance records are a key element of a maintenance program that is managed. Accurate maintenance records can help your Cat dealer to fine-tune the recommended maintenance intervals in order to meet the specific operating situation. This should result in a lower engine operating cost.

Records should be kept for the following items:

Fuel Consumption – A record of fuel consumption is essential in order to determine when the load sensitive components should be inspected or repaired. Fuel consumption also determines overhaul intervals.

Service Hours – A record of service hours is essential to determine when the speed sensitive components should be inspected or repaired.

Documents – These items should be easy to obtain, and these items should be kept in the engine history file. All of the documents should show this information: date, service hours, fuel consumption, unit number and engine serial number. The following types of documents should be kept as proof of maintenance or repair for warranty:

Keep the following types of documents as proof of maintenance for warranty. Also, keep these types of documents as proof of repair for warranty:

- Dealer work orders and itemized bills
- Owner repair costs
- Owner receipts
- Maintenance log
Maintenance Log

SMCS Code: 1000; 4450

<table>
<thead>
<tr>
<th>Engine Model</th>
<th>Customer Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td>Arrangement Number</td>
</tr>
<tr>
<td>Service Hours</td>
<td>Quantity Of Fuel</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reference Material

SMCS Code: 1000; 4450

The following literature can be obtained through any Cat dealer.

Coolants

- Data Sheet, PEHJ0067, “Cat ELC (Extended Life Coolant) (Worldwide Formulation)”
- Data Sheet, PEHP9554, “Diesel Engine Antifreeze/Coolant (DEAC)”
- Special Publication, PMEP5027, “Label - ELC Radiator Label”
- Special Publication, SEBD0518, “Know Your Cooling System”

Fuels

- Special Publication, SENR9620, “Improving Fuel System Durability”

Greases

- Data Sheet, NEHP6010, “Cat Ultra 5Moly Grease”
- Data Sheet, NEHP6011, “Arctic Platinum Grease Spec Sheet”
- Data Sheet, NEHP6012, “Cat Desert Gold Grease”
- Data Sheet, NEHP6015, “Cat Special Purpose Grease”
- Special Publication, PEGJ0035, “Grease Selection Guide”
- Data Sheet, PEHJ0088, “Cat Multipurpose Grease”
- Data Sheet, PEHP0002, “Molybdenum Grease Data Sheet”
- Data Sheet, PEHP6002, “Cat Advanced 3Moly Grease”

Lubricants

- Special Publication, PEHJ0192, “Optimizing S·O·S Oil Change Intervals”
- Data Sheet, PEHJ0021, “Product Data Sheet for Cat DEO (Diesel Engine Oil) APD, EAME, LACD Only”
- Data Sheet, PEHJ0059, “Cat DEO (for North America)”
- Data Sheet, PEHJ0072, “Cat DEO (Brazil Only)”
- Special Publication, PEHP6001, “How To Take A Good Oil Sample”
- Data Sheet, PEHP7062, “Full Synthetic Diesel Engine Oil Data Sheet”
- Special Publication, PELJ0179, “FLU03-02 Caterpillar Engine Crankcase Fluid-1 Specifications (All World Market Areas)”

S·O·S Services

- Data Sheet, NEHP6013, “S·O·S Fluids Analysis Products”
- Special Publication, PEHJ0191, “Cat S·O·S Fluids Analysis”
- Special Publication, PEHP7076, “Understanding S·O·S Services Tests”
Miscellaneous

- Special Instruction, NENG2500, “Cat dealer Service Tool Catalog”
- Special Publication, PECP9067, “One Safe Source”
- Special Instruction, REHS0354, “Charging System Troubleshooting for All Engines”
- Special Instruction, REHS0871, “Electronic Installation Guide”.
- Special Publication, SEBF8029, “Index to Guidelines for Reusable Parts and Salvage Operations”
- Special Publication, SEBF8062, “Guideline for Reusable Parts - Procedure to Inspect and Clean Air Filters”
- Special Publication, SEBU6251, “Caterpillar Commercial Diesel Engine Fluids Recommendations”
- Special Instruction, SEHS7332, “Warning Tag - Danger Do Not Operate”
- Special Instruction, SEHS7633, “Battery Test Procedure”
- Special Instruction, SEHS9031, “Storage Procedure for Caterpillar Products”
- Specifications, SENR3130, “Torque Specifications Module”
- Service Manual, SENR9840, “C15 and C18 Industrial Engines”
- Special Instruction, SMHS7001, “Assembly of Fan Drive Pulley Assemblies”

Additional Reference Material

The “Engine Fluids Data Book” can be obtained from the following locations: local technological society, local library and local college. If necessary, consult EMA at the following address:

Engine Manufacturers Association
Two North LaSalle Street, Suite 2200
Chicago, IL, USA 60602
E-mail: ema@enginemanufacturers.org
Telephone (312) 827-8700
Facsimile (312) 827-8737

The “Society of Automotive Engineers (SAE) Specifications” can be found in your SAE handbook. This publication can also be obtained from the following locations: local technological society, local library and local college. If necessary, consult SAE at the following address:

SAE International
400 Commonwealth Drive
Warrendale, PA, USA 15096-0001
Telephone (724) 776-4841

The “American Petroleum Institute Publication No. 1509” can be obtained from the following locations: local technological society, local library and local college. If necessary, consult API at the following address:

American Petroleum Institute
1220 L St. N.W.
Washington, DC, USA 20005
Telephone (202) 682-8000

The International Organization for Standardization (ISO) offers information and customer service regarding international standards and standardizing activities. ISO can also supply information on the following subjects that are not controlled by ISO: national standards, local standards, regulations, certification and related activities. Consult the member of ISO in your country.

International Organization for Standardization (ISO)
1, rue de Varembé
Case postale 56
CH-1211 Genève 20
Switzerland
Telephone +41 22 749 01 11
Facsimile +41 22 733 34 30
E-mail central@iso.ch
web site http://www.iso.ch

European classifications are established by the Conseil International Des Machines à Combustion (CIMAC) (International Council on Combustion Engines).

CIMAC Central Secretariat
Lyoner Strasse 18
60528 Frankfurt
Germany
Telephone +49 69 6603 1567
Facsimile +49 69 6603 1566

Decommissioning and Disposal

SMCS Code: 1000

When the product is removed from service, local regulations for the product decommissioning will vary. Disposal of the product will vary with local regulations. Consult the nearest Cat dealer for additional information.
Index

A
After Starting Engine .. 36
Extended Idle at Cold Ambient Temperature 36
After Stopping Engine .. 44
Air Compressor - Check (If equipped) 60
Air Shutoff - Test .. 60
Air Tank Moisture and Sediment - Drain (If Equipped) 61
ARD Spark Plug - Replace (If Equipped) 59
Installing the Spark Plug 60
Removing the Spark Plug 59

B
Battery - Recycle .. 61
Battery - Replace .. 61
Battery Disconnect Switch (If Equipped) 27
Battery Electrolyte Level - Check 62
Battery or Battery Cable - Disconnect 62
Before Starting Engine 13, 33
Belts - Inspect/Replace (If Equipped) 63
Single Belt .. 63
Two or More Belts 64
Burn Prevention ... 10
Batteries ... 11
Coolant ... 10
Oils .. 11

C
Cold Weather Operation 42
Cold Weather Starting 33
Ether Injection System (If Equipped) 34
Compression Brake - Inspect/Adjust/Replace 64
Coolant (DEAC) - Change 64
Cooling Systems with Heavy Deposits or Plugging 66
Drain ... 65
Fill ... 66
Flush ... 65
Coolant (ELC) - Change 66
Drain ... 67
Fill ... 67
Flush ... 67
Coolant Extender (ELC) - Add 68
Coolant Level - Check 69
Coolant Sample (Level 1) - Obtain 69
Coolant Sample (Level 2) - Obtain 70
Cooling System Supplemental Coolant Additive (SCA) - Test/Add (Systems Which are Filled with Conventional Coolant) 70
Maintain the Proper Concentration of SCA in the Coolant.. 71
Crushing Prevention and Cutting Prevention 13
Customer Assistance 96
Outside of the USA and of Canada 96
USA and Canada 96
Customer Service 96

D
Decommissioning and Disposal 101
Diesel Particulate Filter - Clean/Replace (If Equipped) 71
Diesel Particulate Filter Regeneration 37
Modes of Regeneration 39
Regeneration ... 37
Regeneration Controls 38
Regeneration Indicator Lamps and Controls 38
Regeneration System Warning Indicators 39
Soot Level Monitoring 39
Driven Equipment - Check 72
Check the Alignment 72
Inspect the Drive Coupling 72
Inspect the Rear Gear Train 72

E
Electrical System ... 14
Grounding Practices 15
Electronic Unit Injector - Check/Replace 72
Emissions Certification Film 21
Emissions Warranty Information 94
Engaging the Driven Equipment 40
Engine - Clean .. 73
Engine Air Cleaner Element (Dual Element/Box Type) - Replace 73
Primary Filter .. 73
Secondary Filter 74
Engine Air Cleaner Element (Single Element) - Inspect/Clean/Replace 75
Inspecting Air Cleaner Elements 75
Servicing the Air Cleaner Elements 75
Fuel System - Prime .. 81
Fuel and the Effect from Cold Weather 42
Fuel Related Components in Cold Weather ... 42
Fuel Priming Pump - Replace 81
Fuel Conservation Practices 41
Fuel System Primary Filter 81
Fuel System Primary Filter/Water Separator ...
- Drain .. 82
Fuel System Secondary Filter - Replace 83
Fuel Storage Tanks 84
Fuel System - Prime .. 81
Fuel System Primary Filter (Water Separator) ...
Element - Replace 82
Replace the Element 82
Fuel Storage Tanks 84
Fuel Tank Water and Sediment - Drain 84
Fuel Tank Water and Sediment - Drain 84
Fumes Disposal Filter Element - Replace ...
(Open Crankcase Ventilation (OCV) Filter) 84

G
General Hazard Information 7
Containing Fluid Spillage 8
Dispose of Waste Properly 10
Fluid Penetration 8
Inhalation ... 9
Lines, Tubes, and Hoses 9
Pressurized Air and Water 8
Softwrap .. 10
Static Electricity Hazard when Fueling with ...
Ultra-low Sulfur Diesel Fuel 9
General Information 16
Grounding Stud - Inspect/Clean/Tighten 86

H
Hoses and Clamps - Inspect/Replace 86
Inspect the Hoses and the Clamps 86
Replace the Hoses and the Clamps 87

I
Important Safety Information 2

L
Lifting and Storage 23

M
Maintenance Interval Schedule (C15 Engines With Ratings Greater Than 579 hp) 55
Daily .. 55
Every 12 000 Service Hours or 6 Years 56
Every 2000 Service Hours 56
<table>
<thead>
<tr>
<th>Period</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 2000 Service Hours or 1 Year</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 250 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 2500 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 3000 Service Hours or 3 Years</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 4000 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 500 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 5000 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 585 000 L (154 540 US gal) of Fuel or 10 000 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 6000 Service Hours or 3 Years</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Initial 500 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>When Required</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 2000 Service Hours or 1 Year</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 2500 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 3000 Service Hours or 3 Years</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 4000 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 500 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 5000 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 585 000 L (154 540 US gal) of Fuel or 10 000 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Every 6000 Service Hours or 3 Years</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Initial 500 Service Hours</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>When Required</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Maintenance Log</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Maintenance Records</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Manual Stop Procedure</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Model View Illustrations</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Mini Industrial Power Display (MIPD)</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
<tr>
<td>Mounting and Dismounting</td>
<td>Maintenance Log, Monitoring System, Indicators and Gauges</td>
</tr>
</tbody>
</table>

Operation Section
- Ordering Replacement Parts
- Overhaul Considerations
- Oil Consumption as an Overhaul Indicator
- Overhaul Recommendation

Plate Locations and Film Locations

Power Take-Off Clutch - Check

Product Description
- Engine Description

Product Identification Information

Product Information Section
- Product Lifting
- Clean Emission Module Lifting
- Engine Lifting with a Fuel Tank
- Product Storage
- Removal from Storage
- Storage (Less Than One Year)

Radiator - Clean

Radiator Restrictions

Reference Information Section

Reference Information
- Reference Material
Index Section

Additional Reference Material 101
Coolants ... 100
Fuels ... 100
Greases ... 100
Lubricants ... 100
Miscellaneous 101
S·O·S Services 100
Reference Materials 98
Refill Capacities 45
 Coolant Refill Capacity 45
 Lubricant Refill Capacity 45

S
Safety Messages 5
 Sulfuric Acid Burn (2) 6
 Universal Warning (1) 6
Safety Section 5
Self-Diagnostics 32
Severe Service Application 52
 Improper Maintenance Procedures
 (Maintenance Procedures Which May
 Contribute to a Severe Service Application)
 .. 53
 Severe Environmental Factors 52
 Severe Operating Conditions 53
Starting Motor - Inspect 92
Starting the Engine 34
 Problems with the Wiring Harness 35
 Starting Problems 35
 Starting the Engine 34
Starting with Jump Start Cables (Do Not
 Use This Procedure in Hazardous
 Locations that have Explosive
 Atmospheres) 35
System Pressure Release 51
 Coolant System 51
 Engine Oil 51
 Fuel System 51

T
Table of Contents 3

V
Valve Actuators - Check 92
Product and Dealer Information

Note: For product identification plate locations, see the section “Product Identification Information” in the Operation and Maintenance Manual.

Delivery Date:

Product Information

Model:

Product Identification Number:

Engine Serial Number:

Transmission
Serial Number:

Generator Serial Number:

Attachment Serial Numbers:

Attachment Information:

Customer Equipment Number:

Dealer Equipment Number:

Dealer Information

Name:

Branch:

Address:

Dealer Contact	Phone Number	Hours
Sales: | |
Parts: | |
Service: | |